A hybrid model of self organizing maps and least square support vector machine for river flow forecasting
-
Published:2012-11-26
Issue:11
Volume:16
Page:4417-4433
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Ismail S.,Shabri A.,Samsudin R.
Abstract
Abstract. Successful river flow forecasting is a major goal and an essential procedure that is necessary in water resource planning and management. There are many forecasting techniques used for river flow forecasting. This study proposed a hybrid model based on a combination of two methods: Self Organizing Map (SOM) and Least Squares Support Vector Machine (LSSVM) model, referred to as the SOM-LSSVM model for river flow forecasting. The hybrid model uses the SOM algorithm to cluster the entire dataset into several disjointed clusters, where the monthly river flows data with similar input pattern are grouped together from a high dimensional input space onto a low dimensional output layer. By doing this, the data with similar input patterns will be mapped to neighbouring neurons in the SOM's output layer. After the dataset has been decomposed into several disjointed clusters, an individual LSSVM is applied to forecast the river flow. The feasibility of this proposed model is evaluated with respect to the actual river flow data from the Bernam River located in Selangor, Malaysia. The performance of the SOM-LSSVM was compared with other single models such as ARIMA, ANN and LSSVM. The performance of these models was then evaluated using various performance indicators. The experimental results show that the SOM-LSSVM model outperforms the other models and performs better than ANN, LSSVM as well as ARIMA for river flow forecasting. It also indicates that the proposed model can forecast more precisely, and provides a promising alternative technique for river flow forecasting.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference101 articles.
1. Adamowski, J. and Sun, K.: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390, 85–91, 2010. 2. Affandi, A. K. and Watanabe, K.: Daily groundwater level fluctuation forecasting using soft computing technique, Nat. Sci., 5, 1–10, 2007. 3. Aqil, M., Kita, K., and Macalino, M.: A Preliminary study on the suitability of data driven approach for continuous water laeve modeling, Int. J. Comp. Sci., 1, 246–252, 2006. 4. Asefa, T., Kemblowski, M., McKee, M., and Khalil, A.: Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318, 7–16, 2006. 5. Behzad, M., Asghari, K., Eazi, M., and Palhang, M.: Generalization performance of support vector machines and neural networks in runoff modeling, Expert Syst. Appl., 36, 7624–7629, 2009.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|