Record extension for short-gauged water quality parameters using a newly proposed robust version of the Line of Organic Correlation technique

Author:

Khalil B.,Adamowski J.

Abstract

Abstract. In many situations the extension of hydrological or water quality time series at short-gauged stations is required. Ordinary least squares regression (OLS) of any hydrological or water quality variable is a traditional and commonly used record extension technique. However, OLS tends to underestimate the variance in the extended records, which leads to underestimation of high percentiles and overestimation of low percentiles, given that the data are normally distributed. The development of the line of organic correlation (LOC) technique is aimed at correcting this bias. On the other hand, the Kendall-Theil robust line (KTRL) method has been proposed as an analogue of OLS with the advantage of being robust in the presence of outliers. Given that water quality data are characterised by the presence of outliers, positive skewness and non-normal distribution of data, a robust record extension technique is more appropriate. In this paper, four record-extension techniques are described, and their properties are explored. These techniques are OLS, LOC, KTRL and a new technique proposed in this paper, the robust line of organic correlation technique (RLOC). RLOC includes the advantage of the LOC in reducing the bias in estimating the variance, but at the same time it is also robust in the presence of outliers. A Monte Carlo study and empirical experiment were conducted to examine the four techniques for the accuracy and precision of the estimate of statistical moments and over the full range of percentiles. Results of the Monte Carlo study showed that the OLS and KTRL techniques have serious deficiencies as record-extension techniques, while the LOC and RLOC techniques are nearly similar. However, RLOC outperforms OLS, KTRL and LOC when using real water quality records.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3