A soil moisture and temperature network for SMOS validation in Western Denmark

Author:

Bircher S.,Skou N.,Jensen K. H.,Walker J. P.,Rasmussen L.

Abstract

Abstract. The Soil Moisture and Ocean Salinity Mission (SMOS) acquires surface soil moisture data of global coverage every three days. Product validation for a range of climate and environmental conditions across continents is a crucial step. For this purpose, a soil moisture and soil temperature sensor network was established in the Skjern River Catchment, Denmark. The objectives of this article are to describe a method to implement a network suited for SMOS validation, and to present sample data collected by the network to verify the approach. The design phase included (1) selection of a single SMOS pixel (44 × 44 km), which is representative of the land surface conditions of the catchment and with minimal impact from open water (2) arrangement of three network clusters along the precipitation gradient, and (3) distribution of the stations according to respective fractions of classes representing the prevailing environmental conditions. Overall, measured moisture and temperature patterns could be related to the respective land cover and soil conditions. Texture-dependency of the 0–5 cm soil moisture measurements was demonstrated. Regional differences in 0–5 cm soil moisture, temperature and precipitation between the north-east and south-west were found to be small. A first comparison between the 0–5 cm network averages and the SMOS soil moisture (level 2) product is in range with worldwide validation results, showing comparable trends for SMOS retrieved soil moisture (R2 of 0.49) as well as initial soil moisture and temperature from ECMWF used in the retrieval algorithm (R2 of 0.67 and 0.97, respectively). While retrieved/initial SMOS soil moisture indicate significant under-/overestimation of the network data (biases of −0.092/0.057 m3 m−3), the initial temperature is in good agreement (bias of −0.2 °C). Based on these findings, the network performs according to expectations and proves to be well-suited for its purpose. The discrepancies between network and SMOS soil moisture will be subject of subsequent studies.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3