Instrumental characteristics and potential greenhouse gas measurement capabilities of the Compact High-Spectral-Resolution Infrared Spectrometer: CHRIS
-
Published:2020-07-13
Issue:7
Volume:13
Page:3769-3786
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
El Kattar Marie-Thérèse,Auriol Frédérique,Herbin Hervé
Abstract
Abstract. Ground-based high-spectral-resolution infrared measurements are an
efficient way to obtain accurate tropospheric abundances of different
gaseous species, in particular greenhouse gases (GHGs) such as
CO2 and CH4. Many ground-based spectrometers are used
in the NDACC and TCCON networks to validate the Level 2 satellite
data, but their large dimensions and heavy mass make them inadequate
for field campaigns. To overcome these problems, the use of portable
spectrometers was recently investigated. In this context, this paper
deals with the CHRIS (Compact High-Spectral-Resolution Infrared
Spectrometer) prototype with unique characteristics such as its high
spectral resolution (0.135 cm−1 nonapodized) and its wide
spectral range (680 to 5200 cm−1). Its main objective is
the characterization of gases and aerosols in the thermal and
shortwave infrared regions. That is why it requires high radiometric
precision and accuracy, which are achieved by performing spectral and
radiometric calibrations that are described in this paper. Furthermore,
CHRIS's capabilities to retrieve vertical CO2 and CH4
profiles are presented through a complete information content
analysis, a channel selection and an error budget estimation in the
attempt to join ongoing campaigns such as MAGIC (Monitoring of
Atmospheric composition and Greenhouse gases through multi-Instruments
Campaigns) to monitor GHGs and validate the actual and future
space missions such as IASI-NG and Microcarb.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference27 articles.
1. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E.,
McMillin L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L.,
Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003. a 2. Clarisse, L., Hurtmans, D., Prata, A. J., Karagulian, F., Clerbaux, C., Mazière, M. D., and Coheur, P.-F.: Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra, Appl. Optics, 49, 3713–3722, https://doi.org/10.1364/AO.49.003713, 2010. a 3. Clerbaux, C., Hadji-Lazaro, J., Turquety, S., George, M., Coheur, P.-F., Hurtmans, D., Wespes, C., Herbin, H., Blumstein, D., Tourniers, B., and Phulpin, T.: The IASI/MetOp1 Mission: First observations and highlights of its potential contribution to GMES2, Space Res. Today, 168, 19–24, https://doi.org/10.1016/S0045-8732(07)80046-5, 2007. a 4. Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J.,
Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a 5. De Wachter, E., Kumps, N., Vandaele, A. C., Langerock, B., and De Mazière, M.: Retrieval and validation of MetOp/IASI methane, Atmos. Meas. Tech., 10, 4623–4638, https://doi.org/10.5194/amt-10-4623-2017, 2017. a
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|