A review of worldwide atmospheric mercury measurements

Author:

Sprovieri F.,Pirrone N.,Ebinghaus R.,Kock H.,Dommergue A.

Abstract

Abstract. A large number of activities have been carried out to characterise the levels of mercury (Hg) species in ambient air and precipitation, in order to understand how they vary over time and how they depend on meteorological conditions. Following the discovery of atmospheric Hg depletion events (AMDEs) in Polar Regions, a significant research effort was made to assess the chemical-physical mechanisms behind the rapid conversion of atmospheric gaseous Hg (Hg0) into reactive and water-soluble forms which are potentially bioavailable. The understanding of the way in which Hg is released into the atmosphere, transformed, deposited and eventually incorporated into biota is of crucial importance not only for the polar regions but also for the marine environment in general. The oceans and seas are both sources and sinks of Hg and play a major role in the Hg cycle. In this work, the available Hg concentration datasets from a number of terrestrial sites (industrial, rural and remote) in both the Northern and Southern Hemispheres as well as over oceans and seas have been investigated. The higher Hg species concentration and variability observed in the Northern Hemisphere suggest that the majority of emissions and re-emissions occur there. The inter-hemispherical gradient with higher total gaseous mercury (TGM) concentrations in the Northern Hemisphere has remained nearly constant over the years for which data are available. The analysis of Hg concentration patterns indicates the differences in regional source/sink characteristics, with increasing variability toward areas strongly influenced by anthropogenic sources. The large increase in Hg emissions in rapidly developing countries (i.e., China, India) over the last decade, due primarily to a sharp increase in energy production from coal combustion, are not currently reflected in the long-term measurements of TGM in ambient air and precipitation at continuous monitoring sites in either Northern Europe or North America. The discrepancy between observed gaseous Hg concentrations (steady or decreasing) and global Hg emission inventories (increasing) has not yet been explained, though the potential oxidation of the atmosphere during the last decade is increasing. Currently, however, a coordinated observational network for Hg does not exist.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3