Short-term variation in near-highway air pollutant gradients on a winter morning

Author:

Durant J. L.,Ash C. A.,Wood E. C.,Herndon S. C.,Jayne J. T.,Knighton W. B.,Canagaratna M. R.,Trull J. B.,Brugge D.,Zamore W.,Kolb C. E.

Abstract

Abstract. Quantification of exposure to traffic-related air pollutants near highways is hampered by incomplete knowledge of the scales of temporal variation of pollutant gradients. The goal of this study was to characterize short-term temporal variation of vehicular pollutant gradients within 200–400 m of a major highway (>150 000 vehicles/d). Monitoring was done near Interstate 93 in Somerville (Massachusetts) from 06:00 to 11:00 on 16 January 2008 using a mobile monitoring platform equipped with instruments that measured ultrafine and fine particles (6–1000 nm, particle number concentration (PNC)); particle-phase (>30 nm) NO3−, SO42−, and organic compounds; volatile organic compounds (VOCs); and CO2, NO, NO2, and O3. We observed rapid changes in pollutant gradients due to variations in highway traffic flow rate, wind speed, and surface boundary layer height. Before sunrise and peak traffic flow rates, downwind concentrations of particles, CO2, NO, and NO2 were highest within 100–250 m of the highway. After sunrise pollutant levels declined sharply (e.g., PNC and NO were more than halved) and the gradients became less pronounced as wind speed increased and the surface boundary layer rose allowing mixing with cleaner air aloft. The levels of aromatic VOCs and NO3−, SO42− and organic aerosols were generally low throughout the morning, and their spatial and temporal variations were less pronounced compared to PNC and NO. O3 levels increased throughout the morning due to mixing with O3-enriched air aloft and were generally lowest near the highway reflecting reaction with NO. There was little if any evolution in the size distribution of 6–225 nm particles with distance from the highway. These results suggest that to improve the accuracy of exposure estimates to near-highway pollutants, short-term (e.g., hourly) temporal variations in pollutant gradients must be measured to reflect changes in traffic patterns and local meteorology.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3