Baseline levels and trends of ground level ozone in Canada and the United States

Author:

Chan E.,Vet R. J.

Abstract

Abstract. A statistical method was developed to extract baseline levels of ground level ozone in Canada and the US, and to quantify the temporal changes of baseline ozone levels on annual, seasonal, diurnal and decadal scales for the period 1997 to 2006 based on ground-level observations from 97 non-urban monitoring sites. Baseline ozone is defined here as ozone measured at a given site in the absence of strong local influences. The quantification of baseline levels involved using a Principal Component Analyses (PCA) to derive groups of commonly-varying sites in contiguous regions by season, followed by using backward air parcel trajectories to systematically select ozone mixing ratios associated with the baseline condition in each of the PCA-derived regions. Decadal trends were estimated by season for each of the regions using a generalized linear mixed model (GLMM). Baseline ozone mixing ratios determined by this method were found to vary geographically and seasonally. For the 1997–2006 period, baseline mixing ratios were calculated for annual and seasonal periods in seven regions of North America based on multi-site multi-year averages of the baseline data sets. The annual average (±1 standard deviation) baseline mixing ratios for the regions are as follows: Continental Eastern Canada=30±9 ppb, Continental Eastern US=30±10 ppb, Coastal Eastern Canada=27±9 ppb, Coastal Western Canada=19±10 ppb; Coastal Western US=39±10 ppb, Continental Western Canada=28±10 ppb and Continental Western US=46±7 ppb. Trends in the baseline mixing ratios were also found to vary by season and by geographical region. On a decadal scale, increasing baseline ozone trends (temperature-adjusted) were observed in all seasons along the Pacific coasts of Canada and the US, although the trends in California were not statistically significant. In the coastal zone of Pacific Canada, positive trends were found with a rate of increase of 0.28±0.26, 0.72±0.55, and 0.93±0.41 ppb/a in spring (MAM), summer (JJA) and winter (DJF), respectively. In the Atlantic coastal region, the trends were also positive in 3 of the 4 seasons (but only significantly so in MAM). In the high ozone precursor emission areas of the Eastern United States, decadal trends in baseline ozone are, in general, negative in the spring, summer and fall and appear to be controlled by the strong within-region changes induced by decreasing ozone precursor emissions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3