Abrupt cold events in the North Atlantic in a transient Holocene simulation

Author:

Klus Andrea,Prange Matthias,Varma VidyaORCID,Tremblay Louis Bruno,Schulz MichaelORCID

Abstract

Abstract. Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two cold events that occurred during an orbitally forced transient Holocene simulation using the Community Climate System Model version 3. Both events occurred during the late Holocene (event 1 referring to 4305–4267 BP and event 2 referring to 3046–3018 BP) and were characterized by substantial surface cooling (−2.7 and −2.2 °C, respectively) and freshening (−0.7 and −0.6 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland. Sea ice even reached the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic meridional overturning circulation was not significantly affected. The events were triggered by prolonged phases of a positive North Atlantic Oscillation which, through changes in surface winds, caused substantial changes in the sub-polar ocean circulation and associated freshwater transports, resulting in a weakening of the sub-polar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g. solar or volcanic) forcing.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3