A multi-proxy analysis of late Quaternary Indian monsoon dynamics for the Maldives, Inner Sea

Author:

Bunzel Dorothea,Schmiedl Gerhard,Lindhorst SebastianORCID,Mackensen AndreasORCID,Reolid Jesús,Romahn Sarah,Betzler Christian

Abstract

Abstract. We present a detailed multi-proxy data record to reveal the late Quaternary changes in marine sedimentation and biogeochemical processes of the upper bathyal Maldives (equatorial Indian Ocean) and how they are related to the benthic ecosystem dynamics. We investigated the sediment core SO-236-052-4 from the central part of the Inner Sea, Maldives, focusing on Fe / Ca and Si / Ca ratios as proxies for terrigenous sediment delivery, as well as Total Organic Carbon (TOC) and Ba / Ca ratios as proxies for marine productivity. Benthic foraminiferal fauna distributions, sortable silt records and stable oxygen and carbon isotope analyses were used for reconstructing the past ecosystem, as well as changes in the intermediate water circulation, bottom water current velocity and oxygenation. This multi-proxy data record shows an enhanced dust supply during the glacial intervals, represented by increased Fe / Ca and Si / Ca ratios, an overall coarsening of the sediment and increasing amount of agglutinated benthic foraminifera. The enhanced dust fluxes can be attributed to higher dust availability in the Asian desert and loess areas and its transport by intensified winter monsoon winds during glacial conditions. These combined effects of wind-induced mixing of surface waters and dust fertilisation during the cold phases resulted in increased surface water productivity and related organic carbon fluxes. Thus, the development of highly diverse benthic foraminiferal faunas and the distribution of certain detritus and suspension feeders were fostered. The difference in the stable carbon isotope signal between epifaunal and deep infaunal benthic foraminifera reveals intermediate water oxygen concentrations between approximately 40 and 100 μmol kg−1. The pattern of oxygen changes resembles that from the deep Arabian Sea suggesting an expansion of the Oxygen Minimum Zone (OMZ) from the Arabian Sea into the tropical Indian Ocean, further controlled by the inflow of the Antarctic Intermediate Water (AAIW). The precessional circulation pattern of the bottom water oxygenation is overprinted by glacial-/interglacial changes resulting in a long phase of reduced ventilation during the last glacial period. The latter process is likely linked to the combined effects of generally enhanced oxygen consumption rates during high-productivity phases, reduced AAIW production and restriction of bathyal environments of the Inner Sea of the Maldives during sea-level lowstands. Thus, this multi-proxy record provide a close linkage between the Indian monsoon oscillation, intermediate water circulation, productivity and sea-level changes on orbital time-scale.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative Link Between Sedimentary Chlorin and Sea‐Surface Chlorophyll‐ a;Journal of Geophysical Research: Biogeosciences;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3