C ∕ N ratio, stable isotope (<i>δ</i><sup>13</sup>C, <i>δ</i><sup>15</sup>N), and <i>n</i>-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic
-
Published:2017-03-28
Issue:6
Volume:14
Page:1617-1630
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Zibulski Romy,Wesener Felix,Wilkes Heinz,Plessen Birgit,Pestryakova Luidmila A.,Herzschuh Ulrike
Abstract
Abstract. Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C ∕ N atomic ratio, δ13C and δ15N data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter- and intraspecific differences in C ∕ N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C ∕ N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C ∕ N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The δ13C values range between −37.0 and −22.5 ‰ (median = −27.8 ‰). The δ15N values range between −6.6 and +1.7 ‰ (median = −2.2 ‰). We find differences in δ13C and δ15N compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xero-mesophilic and meso-hygrophilic mosses, i.e. having a dominance of n-alkanes with long (n-C29, n-C31) and intermediate (n-C25) chain lengths, respectively. Overall, our results reveal that C ∕ N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference93 articles.
1. Aerts, R., Verhoeven, J. T. A., and Whigham, D. F.: Plant-mediated controls on nutrient cycling in temperate fens and bogs, Ecology, 80, 2170–2181, 1999. 2. Aichner, B., Herzschuh, U., and Wilkes, H.: Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau, Org. Geochem., 41, 706–718, https://doi.org/10.1016/j.orggeochem.2010.02.002, 2010. 3. Andersson, R. A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P., and Mörth, M.: Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic, Org. Geochem., 42, 1065–1075, https://doi.org/10.1016/j.orggeochem.2011.06.020, 2011. 4. Asada, T., Warner, B. G., and Aravena, R.: Nitrogen isotope signature variability in plant species from open peatland, Aquat. Bot., 82, 297–307, https://doi.org/10.1016/j.aquabot.2005.05.005, 2005. 5. Atkin, O. K.: Reassessing the nitrogen relations of Arctic plants: a mini-review, Plant Cell Environ., 19, 695–704, https://doi.org/10.1111/j.1365-3040.1996.tb00404.x, 1996.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|