Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe
-
Published:2022-05-11
Issue:9
Volume:22
Page:6151-6165
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Nussbaumer Clara M.ORCID, Pozzer AndreaORCID, Tadic IvanORCID, Röder Lenard, Obersteiner FlorianORCID, Harder HartwigORCID, Lelieveld JosORCID, Fischer Horst
Abstract
Abstract. The COVID-19 (coronavirus disease 2019) European lockdowns have led to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO2 (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NOx≡ NO + NO2) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O3). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPRs) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN (Upper Tropospheric Ozone: Processes Involving HOx and NOx) campaigns in 2003 and 2004, the HOOVER (HOx over Europe) campaigns in 2006 and 2007, and the BLUESKY campaign in 2020, the latter performed during the COVID-19 lockdown. We present in situ observations and simulation results from the ECHAM5 (fifth-generation European Centre Hamburg general circulation model, version 5.3.02)/MESSy2 (second-generation Modular Earth Submodel System, version 2.54.0) Atmospheric Chemistry (EMAC), model which allows for scenario calculations with business-as-usual emissions during the BLUESKY campaign, referred to as the “no-lockdown scenario”. We show that the COVID-19 lockdown reduced NO and NO2 mixing ratios in the upper troposphere by around 55 % compared to the no-lockdown scenario due to reduced air traffic. O3 production and loss terms reflected this reduction with a deceleration in O3 cycling due to reduced mixing ratios of NOx, while NOPRs were largely unaffected. We also study the role of methyl peroxyradicals forming HCHO (αCH3O2) to show that the COVID-19 lockdown shifted the chemistry in the upper-troposphere–tropopause region to a NOx-limited regime during BLUESKY. In comparison, we find a volatile organic compound (VOC)-limited regime to be dominant during UTOPIHAN.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference76 articles.
1. Balamurugan, V., Chen, J., Qu, Z., Bi, X., Gensheimer, J., Shekhar, A.,
Bhattacharjee, S., and Keutsch, F. N.: Tropospheric NO2 and O3 response to
COVID-19 lockdown restrictions at the national and urban scales in Germany,
J. Geophys. Res.-Atmos., 126, 1–15,
https://doi.org/10.1029/2021JD035440, 2021. a 2. Bouarar, I., Gaubert, B., Brasseur, G. P., Steinbrecht, W., Doumbia, T.,
Tilmes, S., Liu, Y., Stavrakou, T., Deroubaix, A., Darras, S., Granier, C., Lacey, F., Müller, J.-F., Shi, X., Elguindi, N., and Wang, T.: Ozone
Anomalies in the Free Troposphere During the COVID-19 Pandemic, Geophys. Res. Lett., 48, e2021GL094204, https://doi.org/10.1029/2021GL094204, 2021. a, b, c 3. Bozem, H., Butler, T. M., Lawrence, M. G., Harder, H., Martinez, M., Kubistin, D., Lelieveld, J., and Fischer, H.: Chemical processes related to net ozone tendencies in the free troposphere, Atmos. Chem. Phys., 17, 10565–10582, https://doi.org/10.5194/acp-17-10565-2017, 2017a. a, b, c 4. Bozem, H., Pozzer, A., Harder, H., Martinez, M., Williams, J., Lelieveld, J., and Fischer, H.: The influence of deep convection on HCHO and H2O2 in the upper troposphere over Europe, Atmos. Chem. Phys., 17, 11835–11848, https://doi.org/10.5194/acp-17-11835-2017, 2017b. a 5. Brockmann Lab: Covid-19 Mobility Project,
http://covid-19-mobility.org/, last access: 9 March 2022. a
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|