An experimental study of the reactivity of terpinolene and <i>β</i>-caryophyllene with the nitrate radical

Author:

Fouqueau Axel,Cirtog Manuela,Cazaunau Mathieu,Pangui Edouard,Doussin Jean-François,Picquet-Varrault BénédicteORCID

Abstract

Abstract. Biogenic volatile organic compounds (BVOCs) are intensely emitted by forests and crops into the atmosphere. They can rapidly react with the nitrate radical (NO3) during the nighttime to form a number of functionalized products. Among them, organic nitrates (ONs) have been shown to behave as reservoirs of reactive nitrogen and consequently influence the ozone budget and secondary organic aerosols (SOAs), which are known to have a direct and indirect effect on the radiative balance and thus on climate. Nevertheless, BVOC + NO3 reactions remain poorly understood. Thus, the primary purpose of this study is to furnish new kinetic and mechanistic data for one monoterpene (C10H16), terpinolene, and one sesquiterpene (C15H24), β-caryophyllene, using simulation chamber experiments. These two compounds have been chosen in order to complete the few experimental data existing in the literature. Rate constants have been measured using both relative and absolute methods. They have been measured to be (6.0 ± 3.8) ×10-11 and (1.8 ± 1.4) ×10-11 cm3 molec.−1 s−1 for terpinolene and β-caryophyllene respectively. Mechanistic studies have also been conducted in order to identify and quantify the main reaction products. Total organic nitrates and SOA yields have been determined. Both terpenes appear to be major ON precursors in both gas and particle phases with formation yields of 69 % for terpinolene and 79 % for β-caryophyllene respectively. They are also major SOA precursors, with maximum SOA yields of around 60 % for terpinolene and 90 % for β-caryophyllene. In order to support these observations, chemical analyses of the gas-phase products were performed at the molecular scale using a proton transfer reaction–time-of-flight–mass spectrometer (PTR-ToF-MS) and FTIR. Detected products allowed proposing chemical mechanisms and providing explanations through peroxy and alkoxy reaction pathways.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3