Fitting a stochastic fire spread model to data

Author:

Wang X. JoeyORCID,Thompson John R. J.,Braun W. John,Woolford Douglas G.

Abstract

Abstract. As the climate changes, it is important to understand the effects on the environment. Changes in wildland fire risk are an important example. A stochastic lattice-based wildland fire spread model was proposed by Boychuk et al. (2007), followed by a more realistic variant (Braun and Woolford, 2013). Fitting such a model to data from remotely sensed images could be used to provide accurate fire spread risk maps, but an intermediate step on the path to that goal is to verify the model on data collected under experimentally controlled conditions. This paper presents the analysis of data from small-scale experimental fires that were digitally video-recorded. Data extraction and processing methods and issues are discussed, along with an estimation methodology that uses differential equations for the moments of certain statistics that can be derived from a sequential set of photographs from a fire. The interaction between model variability and raster resolution is discussed and an argument for partial validation of the model is provided. Visual diagnostics show that the model is doing well at capturing the distribution of key statistics recorded during observed fires.

Publisher

Copernicus GmbH

Subject

Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3