Comparing projections of future changes in runoff and water resources from hydrological and ecosystem models in ISI-MIP

Author:

Davie J. C. S.,Falloon P. D.,Kahana R.,Dankers R.ORCID,Betts R.,Portmann F. T.,Clark D. B.ORCID,Itoh A.ORCID,Masaki Y.,Nishina K.,Fekete B.,Tessler Z.,Liu X.ORCID,Tang Q.ORCID,Hagemann S.,Stacke T.ORCID,Pavlick R.,Schaphoff S.,Gosling S. N.ORCID,Franssen W.,Arnell N.

Abstract

Abstract. Projections of future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Intercomparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed. Projections of change from the baseline period (1981–2010) to the future (2070–2099) from a number of different ecosystems and hydrological models were studied. The differences between projections from the two types of model were looked at globally and regionally. Typically, across different regions the ecosystem models tended to project larger increases and smaller decreases in runoff than the hydrological models. However, the differences varied both regionally and seasonally. Sensitivity experiments were also used to investigate the contributions of varying CO2 and allowing vegetation distribution to evolve on projected changes in runoff. In two out of four models which had data available from CO2 sensitivity experiments, allowing CO2 to vary was found to increase runoff more than keeping CO2 constant, while in two models runoff decreased. This suggests more uncertainty in runoff responses to elevated CO2 than previously considered. As CO2 effects on evapotranspiration via stomatal conductance and leaf-area index are more commonly included in ecosystems models than in hydrological models, this may partially explain some of the difference between model types. Keeping the vegetation distribution static in JULES runs had much less effect on runoff projections than varying CO2, but this may be more pronounced if looked at over a longer timescale as vegetation changes may take longer to reach a new state.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3