Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use

Author:

Anindita SastrikaORCID,Finke PeterORCID,Sleutel Steven

Abstract

Abstract. Land use is recognized to impact soil geochemistry on the centennial to millennial timescale, with implications for the distribution and stability of soil organic carbon (SOC). Young volcanic soils in tropical areas are subject to much faster pedogenesis, noticeable already on the centennial or even decadal timescale. As land use is a recognized factor for soil formation, it is thus conceivable that even relatively recent land use conversion in such areas would already bear a significant impact on the resulting formed soils., e.g., in terms of content of pedogenic oxides. Very scarce observational evidence exists, so such indirect implications of land use on SOC cycling are largely unknown. We here investigated SOC fractions, substrate-specific mineralization (SOC or added plant residue), and net priming of SOC as a function of forest or agricultural land use on Indonesian volcanic soils. The content of oxalate-extracted Al (Alo) correlated well with organic carbon (OC) associated with sand-sized aggregates, particularly in the subsoil. The proportion of SOC in sand-sized ultrasonication-resistant (400 J mL−1) aggregates was also higher in agricultural land use compared to pine forest land use, and a likewise contrast existed for Alo. These combined observations suggest that enhanced formation of Al (hydr)oxides promoted aggregation and physical occlusion of OC. This was, importantly, also consistent with a relatively lesser degradability of SOC in the agricultural sites, though we found no likewise difference in degradability of added 13C-labeled ryegrass or in native SOC priming between the pine forest and agricultural land uses. We expected that amorphous Al content under agricultural land use would mainly have promoted mineral association of SOC compared to under pine forest land use but found no indications for this. Improved small-scale aggregation of tropical Andosols caused by conversion to agriculture and high carbon input via organic fertilizer may thus partially counter the otherwise expectable decline of SOC stocks following cultivation. Such indirect land use effects on the SOC balance appeared relevant for correct interpretation and prediction of the long-term C balance of (agro)ecosystems with soil subject to intense development, like the here-studied tropical Andosols.

Publisher

Copernicus GmbH

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3