Miocene Antarctic Ice Sheet area adapts significantly faster than volume to CO2-induced climate change

Author:

Stap Lennert B.ORCID,Berends Constantijn J.ORCID,van de Wal Roderik S. W.

Abstract

Abstract. The strongly varying benthic δ18O levels of the early and mid-Miocene (23 to 14 Myr ago) are primarily caused by a combination of changes in Antarctic Ice Sheet (AIS) volume and deep-ocean temperatures. These factors are coupled since AIS changes affect deep-ocean temperatures. It has recently been argued that this is due to changes in ice sheet area rather than volume because area changes affect the surface albedo. This finding would be important when the transient AIS grows relatively faster in extent than in thickness, which we test here. We analyse simulations of Miocene AIS variability carried out using the three-dimensional ice sheet model IMAU-ICE forced by warm (high CO2, no ice) and cold (low CO2, large East AIS) climate snapshots. These simulations comprise equilibrium and idealized quasi-orbital transient runs with strongly varying CO2 levels (280 to 840 ppm). Our simulations show a limited direct effect of East AIS changes on Miocene orbital-timescale benthic δ18O variability because of the slow build-up of volume. However, we find that relative to the equilibrium ice sheet size, the AIS area adapts significantly faster and more strongly than volume to the applied forcing variability. Consequently, during certain intervals the ice sheet is receding at the margins, while ice is still building up in the interior. That means the AIS does not adapt to a changing equilibrium size at the same rate or with the same sign everywhere. Our results indicate that the Miocene Antarctic Ice Sheet affects deep-ocean temperatures more than its volume suggests.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3