Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier

Author:

Bash Eleanor A.ORCID,Moorman Brian J.ORCID

Abstract

Abstract. Models of glacier surface melt are commonly used in studies of glacier mass balance and runoff; however, with limited data available, most models are validated based on ablation stakes and data from automatic weather stations (AWSs). The technological advances of unmanned aerial vehicles (UAVs) and structure from motion (SfM) have made it possible to measure glacier surface melt in detail over larger portions of a glacier. In this study, we use melt measured using SfM processing of UAV imagery to assess the performance of an energy balance (EB) and enhanced temperature index (ETI) melt model in two dimensions. Imagery collected over a portion of the ablation zone of Fountain Glacier, Nunavut, on 21, 23, and 24 July 2016 was previously used to determine distributed surface melt. An AWS on the glacier provides some measured inputs for both models as well as an additional check on model performance. Modelled incoming solar radiation and albedo derived from UAV imagery are also used as inputs for both models, which were used to estimate melt from 21 to 24 July 2016. Both models estimate total melt at the AWS within 16 % of observations (4 % for ETI). Across the study area the median model error, calculated as the difference between modelled and measured melt (EB = −0.064 m, ETI = −0.050 m), is within the uncertainty of the measurements. The errors in both models were strongly correlated to the density of water flow features on the glacier surface. The relation between water flow and model error suggests that energy from surface water flow contributes significantly to surface melt on Fountain Glacier. Deep surface streams with highly asymmetrical banks are observed on Fountain Glacier, but the processes leading to their formation are missing in the model assessed here. The failure of the model to capture flow-induced melt would lead to significant underestimation of surface melt should the model be used to project future change.

Funder

Natural Sciences and Engineering Research Council of Canada

Arctic Institute of North America

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3