The impact of chlorine chemistry combined with heterogeneous N<sub>2</sub>O<sub>5</sub> reactions on air quality in China

Author:

Yang Xiajie,Wang Qiaoqiao,Ma Nan,Hu WeiweiORCID,Gao YangORCID,Huang Zhijiong,Zheng Junyu,Yuan BinORCID,Yang Ning,Tao Jiangchuan,Hong Juan,Cheng YafangORCID,Su HangORCID

Abstract

Abstract. The heterogeneous reaction of N2O5 on Cl-containing aerosols (heterogeneous N2O5 + Cl chemistry) plays a key role in chlorine activation, NOx recycling, and consequently O3 and PM2.5 formation. In this study, we use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for the heterogeneous N2O5 + Cl chemistry (i.e., the uptake coefficient of N2O5 (γN2O5) and the ClNO2 yield (φClNO2)) to investigate the impacts of chlorine chemistry on air quality in China, the role of the heterogeneous N2O5 + Cl chemistry, and the sensitivity of air pollution formation to chlorine emissions and parameterizations for γN2O5 and φClNO2. The model simulations are evaluated against multiple observational datasets across China and show significant improvement in reproducing observations of particulate chloride, N2O5, and ClNO2 when including anthropogenic chlorine emissions and updates to the parameterization of the heterogeneous N2O5 + Cl chemistry relative to the default model. The simulations show that total tropospheric chlorine chemistry could increase annual mean maximum daily 8 h average (MDA8) O3 by up to 4.5 ppbv but decrease PM2.5 by up to 7.9 µg m−3 in China, 83 % and 90 % of which could be attributed to the effect of the heterogeneous N2O5 + Cl chemistry. The heterogeneous uptake of N2O5 on chloride-containing aerosol surfaces is an important loss pathway of N2O5 as well as an important source of O3 and hence is particularly useful in elucidating the commonly seen ozone underestimations relative to observations. The importance of chlorine chemistry largely depends on both chlorine emissions and the parameterizations for the heterogeneous N2O5 + Cl chemistry. With the additional chlorine emissions, the simulations show that annual MDA8 O3 in China could be increased by up to 3.5 ppbv. The corresponding effect on PM2.5 concentrations varies largely with regions, with an increase of up to 4.5 µg m−3 in the North China Plain but a decrease of up to 3.7 µg m−3 in the Sichuan Basin. On the other hand, even with the same chlorine emissions, the effects on MDA8 O3 and PM2.5 in China could differ by 48 % and 27 %, respectively, between different parameterizations.

Funder

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Guangdong Innovative and Entrepreneurial Research Team Program

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference64 articles.

1. Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the Reactive Uptake of Gaseous Compounds by Organic-Coated Aqueous Aerosols: Theoretical Analysis and Application to the Heterogeneous Hydrolysis of N2O5, J. Phys. Chem. A, 110, 10435–10443, https://doi.org/10.1021/jp062403c, 2006..

2. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.

3. Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.

4. Bertram, T. H., Perring, A. E., Wooldridge, P. J., Dibb, J., Avery, M. A., and Cohen, R. C.: On the export of reactive nitrogen from Asia: NOx partitioning and effects on ozone, Atmos. Chem. Phys., 13, 4617–4630, https://doi.org/10.5194/acp-13-4617-2013, 2013.

5. Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dubé, W. P., Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010, J. Geophys. Res.-Atmos., 121, 5051–5070, https://doi.org/10.1002/2015JD024737, 2016.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3