Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models

Author:

Wang Sally S.-C.ORCID,Qian Yun,Leung L. RubyORCID,Zhang Yang

Abstract

Abstract. Annual burned areas in the United States have increased 2-fold during the past decades. With more large fires resulting in more emissions of fine particulate matter, an accurate prediction of fire emissions is critical for quantifying the impacts of fires on air quality, human health, and climate. This study aims to construct a machine learning (ML) model with game-theory interpretation to predict monthly fire emissions over the contiguous US (CONUS) and to understand the controlling factors of fire emissions. The optimized ML model is used to diagnose the process-based models in the Fire Modeling Intercomparison Project (FireMIP) to inform future development. Results show promising performance for the ML model, Community Land Model (CLM), and Joint UK Land Environment Simulator-Interactive Fire And Emission Algorithm For Natural Environments (JULES-INFERNO) in reproducing the spatial distributions, seasonality, and interannual variability of fire emissions over the CONUS. Regional analysis shows that only the ML model and CLM simulate the realistic interannual variability of fire emissions for most of the subregions (r>0.95 for ML and r=0.14∼0.70 for CLM), except for Mediterranean California, where all the models perform poorly (r=0.74 for ML and r<0.30 for the FireMIP models). Regarding seasonality, most models capture the peak emission in July over the western US. However, all models except for the ML model fail to reproduce the bimodal peaks in July and October over Mediterranean California, which may be explained by the smaller wind speeds of the atmospheric forcing data during Santa Ana wind events and limitations in model parameterizations for capturing the effects of Santa Ana winds on fire activity. Furthermore, most models struggle to capture the spring peak in emissions in the southeastern US, probably due to underrepresentation of human effects and the influences of winter dryness on fires in the models. As for extreme events, both the ML model and CLM successfully reproduce the frequency map of extreme emission occurrence but overestimate the number of months with extremely large fire emissions. Comparing the fire PM2.5 emissions from the ML model with process-based fire models highlights their strengths and uncertainties for regional analysis and prediction and provides useful insights into future directions for model improvements.

Funder

U.S. Environmental Protection Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3