The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions

Author:

Klumpp Kristian,Marcolli ClaudiaORCID,Peter Thomas

Abstract

Abstract. Potassium feldspars (K-feldspars), such as microcline, are considered key dust minerals inciting ice nucleation in mixed-phase clouds. Besides the high ice nucleation activity of microcline, recent studies also revealed a high sensitivity of microcline to interaction with solutes on its surface. Here, we investigate the effect of organic and bio-organic substances on the ice nucleation activity of microcline, with the aim to better understand the underlying surface interactions. We performed immersion freezing experiments with microcline in solutions of three carboxylic acids, five amino acids, and two polyols to represent these compound classes. By means of a differential scanning calorimeter we investigated the freezing of emulsified droplets of microcline suspended in various solutions. Depending on the type of solute, different effects were observed. In the case of carboxylic acids (acetic, oxalic, and citric acid), the measured heterogeneous onset temperatures, Thet, showed no significant deviation from the behavior predicted by the water activity criterion, Thet(aw)=Tmelt(aw+Δaw), which relates Thet with the melting point temperature Tmelt via a constant water activity offset Δaw. While this behavior could be interpreted as a lack of interaction of the solute molecules with the surface, the carboxylic acids caused the fraction of heterogeneously frozen water, Fhet(aw), to decrease by up to 40 % with increasing solute concentrations. In combination, unaltered Thet(aw) and reduced Fhet(aw) suggest that active sites were largely deactivated by the acid molecules, but amongst those remaining active are also the best sites with the highest Thet. A deviation from this behavior is citric acid, which showed not only a decrease in Fhet, but also a decrease in Thet of up to 4 K for water activities below 0.99, pointing to a depletion of the best active sites by interactions with the citrate ions. When neutralized solutions of the acids were used instead, the decrease in Fhet became even more pronounced. The slope of Thet(aw) was different for each of the neutralized acid solutions. In the case of amino acid solutions, we found a decrease in Thet (up to 10 K), significantly below the Δaw criterion, as well as a reduction in Fhet (up to 60 %). Finally, in the case of the investigated polyols, no significant deviation of Thet from the Δaw criterion was observed, and no significant deviation of Fhet in comparison to a pure water suspension was found. Furthermore, we measured the effects of aging on the ice nucleation activity in experiments with microcline suspended in solutions for up to 7 d, and tested the reversibility of the interaction with the solutes after aging for 10 d. For citric acid, an ongoing irreversible degradation of the ice nucleation activity was observed, whereas the amino acids showed completely reversible effects. In summary, our experiments demonstrate a remarkable sensitivity of microcline ice nucleation activity to surface interactions with various solutes, underscoring the importance of the history of such particles from the source to frozen cloud droplets in the atmosphere.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3