Working at the limit: a review of thermodynamics and optimality of the Earth system

Author:

Kleidon AxelORCID

Abstract

Abstract. Optimality concepts related to energy and entropy have long been proposed to govern Earth system processes, for instance in the form of propositions that certain processes maximize or minimize entropy production. These concepts, however, remain quite obscure, seem contradictory to each other, and have so far been mostly disregarded. This review aims to clarify the role of thermodynamics and optimality in Earth system science by showing that they play a central role in how, and how much, work can be derived from solar forcing and that this imposes a major constraint on the dynamics of dissipative structures of the Earth system. This is, however, not as simple as it may sound. It requires a consistent formulation of Earth system processes in thermodynamic terms, including their linkages and interactions. Thermodynamics then constrains the ability of the Earth system to derive work and generate free energy from solar radiative forcing, which limits the ability to maintain motion, mass transport, geochemical cycling, and biotic activity. It thus limits directly the generation of atmospheric motion and other processes indirectly through their need for transport. I demonstrate the application of this thermodynamic Earth system view by deriving first-order estimates associated with atmospheric motion, hydrologic cycling, and terrestrial productivity that agree very well with observations. This supports the notion that the emergent simplicity and predictability inherent in observed climatological variations can be attributed to these processes working as hard as they can, reflecting thermodynamic limits directly or indirectly. I discuss how this thermodynamic interpretation is consistent with established theoretical concepts in the respective disciplines, interpret other optimality concepts in light of this thermodynamic Earth system view, and describe its utility for Earth system science.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference173 articles.

1. Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Chiu, L., Xie, P., Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., and Gu, G.: NOAA CDR Program, Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly), Tech. Rep., National Centers for Environmental Information, https://doi.org/10.7289/V56971M6, 2016. a

2. Aoki, I.: Entropy productions on the Earth and other planets of the solar system, J. Phys. Soc. Japan, 52, 1075–1078, 1983. a

3. Arya, S. P.: Introduction to Micrometeorology, Academic Press, San Diego, CA, ISBN 978-0-12-059354-5, 1998. a

4. Atkins, P. and de Paula, J.: Physical chemistry, Oxford Univ. Press, 9th edition edn., ISBN 9780198847816, 2010. a

5. Bejan, A.: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys., 79, 1191–1218, 1996. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3