Late Paleocene CO<sub>2</sub> drawdown, climatic cooling and terrestrial denudation in the southwest Pacific

Author:

Hollis Christopher J.,Naeher SebastianORCID,Clowes Christopher D.,Naafs B. David A.ORCID,Pancost Richard D.,Taylor Kyle W. R.,Dahl Jenny,Li Xun,Ventura G. Todd,Sykes Richard

Abstract

Abstract. ​​​​​​​Late Paleocene deposition of an organic-rich sedimentary facies on the continental shelf and slope of New Zealand and eastern Australia has been linked to short-lived climatic cooling and terrestrial denudation following sea level fall. Recent studies confirm that the organic matter in this facies, termed “Waipawa organofacies”, is primarily of terrestrial origin, with a minor marine component. It is also unusually enriched in 13C. In this study we address the cause of this enrichment. For Waipawa organofacies and its bounding facies in the Taylor White section, Hawke's Bay, paired palynofacies and carbon isotope analysis of heavy liquid-separated density fractions indicate that the heaviest δ13C values are associated with degraded phytoclasts (woody plant matter) and that the 13C enrichment may be partly due to lignin degradation. Compound-specific stable carbon isotope analyses of samples from the Taylor White and mid-Waipara (Canterbury) sections display similar trends and further reveal a residual 13C enrichment of ∼ 2.5 ‰ in higher plant biomarkers (long chain n-alkanes and fatty acids) and a ∼ 2 ‰–5 ‰ change in subordinate marine biomarkers. Using the relationship between atmospheric CO2 and C3 plant tissue δ13C values, we determine that the 3 ‰ increase in terrestrial δ13C may represent a ∼ 35 % decrease in atmospheric CO2. Refined age control for Waipawa organofacies indicates that deposition occurred between 59.2 and 58.5 Ma, which coincides with an interval of carbonate dissolution in the deep sea that is associated with a Paleocene oxygen isotope maximum (POIM, 59.7–58.1 Ma) and the onset of the Paleocene carbon isotope maximum (PCIM, 59.3–57.4 Ma). This association suggests that Waipawa deposition occurred during a time of cool climatic conditions and increased carbon burial. This relationship is further supported by published TEX86-based sea surface temperatures that indicate a pronounced regional cooling during deposition. We suggest that reduced greenhouse gas emissions from volcanism and accelerated carbon burial, due to tectonic factors, resulted in short-lived global cooling, growth of ephemeral ice sheets and a global fall in sea level. Accompanying erosion and carbonate dissolution in deep-sea sediment archives may have hidden the evidence of this “hypothermal” event until now.

Funder

Ministry of Business, Innovation and Employment

Marsden Fund

Natural Environment Research Council

European Research Council

University of Bristol

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3