The role of microorganisms on the formation of a stalactite in Botovskaya Cave, Siberia – palaeoenvironmental implications

Author:

Pacton M.,Breitenbach S. F. M.,Lechleitner F. A.ORCID,Vaks A.,Rollion-Bard C.,Gutareva O. S.,Osinzev A. V.,Vasconcelos C.

Abstract

Abstract. Calcitic speleothems in caves can form through abiogenic, biogenic, or a combination of both processes. Many issues conspire to make the assessment of biogenicity difficult, especially when focusing on old speleothem deposits. This study reports a multiproxy analysis of a Siberian stalactite, combining high-resolution microscopy, isotope geochemistry and microbially enhanced mineral precipitation laboratory experiments. The contact between growth layers in a stalactite exhibits a biogenic isotopic signature; coupled with morphological evidence this supports a microbial origin of calcite crystals. SIMS δ13C data suggest that microbially mediated speleothem formation occurred repeatedly for short intervals before abiotic precipitation took over. The studied stalactite also contains iron and manganese oxides that have been mediated by microbial activity through extracellular polymeric substances (EPS)-influenced organomineralization processes. The latter reflect palaeoenvironmental changes that occurred more than 500 000 yr ago, possibly related to the presence of a peat bog above the cave at that time. Microbial activity can initiate calcite deposition in the aphotic zone of caves before inorganic precipitation of speleothem carbonates. This study highlights the importance of microbially induced fractionation that can result in large negative δ13C excursions. The micro-scale biogeochemical processes imply that microbial activity has only negligible effects on the bulk δ13C signature in speleothems, which is more strongly affected by CO2 degassing and the hostrock signature.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3