neXtSIM: a new Lagrangian sea ice model

Author:

Rampal P.,Bouillon S.ORCID,Ólason E.ORCID,Morlighem M.ORCID

Abstract

Abstract. The Arctic sea ice cover has changed drastically over the last decades. Associated with these changes is a shift in dynamical regime seen by an increase of extreme fracturing events and an acceleration of sea ice drift. The highly non-linear dynamical response of sea ice to external forcing makes modelling these changes, and the future evolution of Arctic sea ice a challenge for current models. It is, however, increasingly important that this challenge be better met, both because of the important role of sea ice in the climate system and because of the steady increase of industrial operations in the Arctic. In this paper we present a new dynamical/thermodynamical sea ice model, called neXtSIM in order to address this. neXtSIM is a continuous and fully Lagrangian model, and the equations are discretised with the finite-element method. In this model, sea ice physics are driven by a synergic combination of two core components: a model for sea ice dynamics built on a new mechanical framework using an elasto-brittle rheology, and a model for sea ice thermodynamics providing damage healing for the mechanical framework. The results of a thorough evaluation of the model performance for the Arctic are presented for the period September 2007 to October 2008. They show that observed multi-scale statistical properties of sea ice drift and deformation are well captured as well as the seasonal cycles of ice volume, area, and extent. These results show that neXtSIM is a very promising tool for simulating the sea ice over a wide range of spatial and temporal scales.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sea Ice Modelling;Springer Polar Sciences;2019-11-13

2. Linking scales in sea ice mechanics;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2017-02-13

3. Error assessment of satellite-derived lead fraction in the Arctic;The Cryosphere;2016-03-14

4. Assessment of error in satellite derived lead fraction in Arctic;2015-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3