Pragmatic solvers for 3D Stokes and elasticity problems with heterogeneous coefficients: evaluating modern incomplete LDL<sup><i>T</i></sup> preconditioners

Author:

Sanan Patrick,May Dave A.,Bollhöfer Matthias,Schenk Olaf

Abstract

Abstract. The need to solve large saddle point systems within computational Earth sciences is ubiquitous. Physical processes giving rise to these systems include porous flow (the Darcy equations), poroelasticity, elastostatics, and highly viscous flows (the Stokes equations). The numerical solution of saddle point systems is non-trivial since the operators are indefinite. Primary tools to solve such systems are direct solution methods (exact triangular factorization) or approximate block factorization (ABF) preconditioners. While ABF solvers have emerged as the state-of-the-art scalable option, they are invasive solvers requiring splitting of pressure and velocity degrees of freedom, a multigrid hierarchy with tuned transfer operators and smoothers, machinery to construct complex Schur complement preconditioners, and the expertise to select appropriate parameters for a given coefficient regime – they are far from being “black box” solvers. Modern direct solvers, which robustly produce solutions to almost any system, do so at the cost of rapidly growing time and memory requirements for large problems, especially in 3D. Incomplete LDLT (ILDL) factorizations, with symmetric maximum weighted-matching preprocessing, used as preconditioners for Krylov (iterative) methods, have emerged as an efficient means to solve indefinite systems. These methods have been developed within the numerical linear algebra community but have yet to become widely used in applications, despite their practical potential; they can be used whenever a direct solver can, only requiring an assembled operator, yet can offer comparable or superior performance, with the added benefit of having a much lower memory footprint. In comparison to ABF solvers, they only require the specification of a drop tolerance and thus provide an easy-to-use addition to the solver toolkit for practitioners. Here, we present solver experiments employing incomplete LDLT factorization with symmetric maximum weighted-matching preprocessing to precondition operators and compare these to direct solvers and ABF-preconditioned iterative solves. To ensure the comparison study is meaningful for Earth scientists, we utilize matrices arising from two prototypical problems, namely Stokes flow and quasi-static (linear) elasticity, discretized using standard mixed finite-element spaces. Our test suite targets problems with large coefficient discontinuities across non-grid-aligned interfaces, which represent a common challenging-for-solvers scenario in Earth science applications. Our results show that (i) as the coefficient structure is made increasingly challenging, by introducing high contrast and complex topology with a multiple-inclusion benchmark, the ABF solver can break down, becoming less efficient than the ILDL solver before breaking down entirely; (ii) ILDL is robust, with a time to solution that is largely independent of the coefficient topology and mildly dependent on the coefficient contrast; (iii) the time to solution obtained using ILDL is typically faster than that obtained from a direct solve, beyond 105 unknowns; and (iv) ILDL always uses less memory than a direct solve.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Reference67 articles.

1. Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ortí, E. S.: Leveraging Data-Parallelism in ILUPACK using Graphics Processors, in: 2014 IEEE 13th International Symposium on Parallel and Distributed Computing, 119–126, https://doi.org/10.1109/ISPDC.2014.19, 2014. a

2. Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ortí, E. S.: Exploiting Task and Data Parallelism in ILUPACK's Preconditioned CG Solver on NUMA Architectures and Many-Core Accelerators, Parallel Computing, 54, 97–107, 2016a. a

3. Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ortí, E. S.: A Data-Parallel ILUPACK for Sparse General and Symmetric Indefinite Linear Systems, in: European Conference on Parallel Processing, Springer, 121–133, 2016b. a

4. Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., and Quintana-Ortí, E. S.: Communication in Task-Parallel ILU-Preconditioned CG Solvers using MPI+OmpSs, Concurr. Comput.-Pract. E., 29, e4280, https://doi.org/10.1002/cpe.4280, 2017. a

5. Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc Web page, available at: https://www.mcs.anl.gov/petsc (last access: 27 October 2020), 2019a. a, b, c

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting spatial symmetries for solving Poisson's equation;Journal of Computational Physics;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3