Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform

Author:

Zhang Qimao,Qiao ShuaiqingORCID,Zhang QishengORCID,Liu Shiyang

Abstract

Abstract. New energy acquisition devices are urgently required to address the increasing global energy consumption and increasing difficulty of energy exploitation. Devices for seismic exploration appear to be small in size, wireless and rapidly becoming more intelligent; hence, a traditional operating platform can no longer satisfy the demand of portable exploration device usage. This study investigates and develops hardware for a wireless microseismic acquisition station and then uses this hardware as a platform to address the distribution of wireless microseismic acquisition stations and deliver monitoring software based on the Android platform, which is portable, popular and has a large number of users. In large-scale field constructions, software can provide operators with visualised station layouts throughout the process, including positioning, ranging, angle measuring and network monitoring. It also offers a real-time network for monitoring small- and medium-sized microseismic acquisition station arrays under construction as well as other functions, such as intelligent control and real-time data monitoring of the status of the acquisition station. A drainage blast monitoring test is conducted on the system, showing positively monitored data and accurate results in the inverse operation. Moreover, the software and hardware are proven to be highly stable and portable through a post-construction test, which can help enhance the field construction efficiency.

Funder

National Basic Research Program of China

PetroChina Innovation Foundation

National High-tech Research and Development Program

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Port Evaluation Framework for Android Software Design;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

2. Design and Implementation of Print Advertisement Based on Computer Image Interactive Virtualization;International Transactions on Electrical Energy Systems;2022-09-09

3. Development of Wireless Transmission System for Microseismicity in Complex Mountainous Area;Mobile Information Systems;2022-05-31

4. Security Threats and Protection Based on Android Platform;2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3