New dynamic NNORSY ozone profile climatology

Author:

Kaifel A. K.,Felder M.,DeClercq C.,Lambert J.-C.

Abstract

Abstract. Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995–2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of the NNORSY ozone profile climatology. The NNORSY ozone profile climatology is available to the community as a comprehensive software library.

Publisher

Copernicus GmbH

Reference49 articles.

1. Bertaux, J. L., Kyrola, E., and Wehr, T.: Stellar occultation technique for atmospheric ozone monitoring: GOMOS on Envisat, Earth Observation Quarterly, 67, 17–20, 2000.

2. Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Cot, C., Kyrola, E., Fussen, D., Tamminen, J., Leppelmeier, G. W., Sofieva, V., Hassinen, S., d'Andon, O. F., Barrot, G., Mangin, A., Theodore, B., Guirlet, M., Korablev, O., Snoeij, P., Koopman, R., and Fraisse, R.: First results on GOMOS/Envisat, Adv. Space Res., 33, 1029–1035, 2004.

3. Bhartia, P.: Algorithm Theoretical Baseline Document, TOMS v8 Total ozone algorithm, available at: http://toms.gsfc.nasa.gov/version8/version8_update.html, 2003.

4. Bloom, S., da Silva, A., and Dee, D.: Technical Report Series on Global Modeling and Data Assimilation, edited by: Suarez, M. J., Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System–Version 4, NASA GSFC NASA/TM–-2005–104606, 26, available at: http://gmao.gsfc.nasa.gov/systems/geos4/Bloom.pdf, 2005.

5. Crevoisier, C., Chédin, A., Matsueda, H., Machida, T., Armante, R., and Scott, N. A.: First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9, 4797–4810, https://doi.org/10.5194/acp-9-4797-2009, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3