Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine (<i>Pinus tabulaeformis</i> Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau
Author:
Cai Q.ORCID, Liu Y., Lei Y., Bao G., Sun B.
Abstract
Abstract. We utilized tree-ring cores, collected from three sites at Lingkong Mountain located in the southeast part of the Chinese Loess Plateau (CLP), to develop a regional ring-width chronology. Significant positive correlations between the tree-ring index and the monthly Palmer drought severity index (PDSI) were identified, indicating that the radial growth of trees in this region was moisture-limited. The March–August mean PDSI was quantitatively reconstructed from 1703 to 2008 with an explained variance of 46.4%. Seven dry periods during 1719–1726, 1742–1748, 1771–1778, 1807–1818, 1832–1848, 1867–1932 and 1993–2008 and six wet periods during 1727–1741, 1751–1757, 1779–1787, 1797–1805, 1853–1864 and 1934–1957 were revealed in our reconstruction. Among them, 1867–1932 and 1934–1957 were identified as the longest dry and wet periods, respectively. On the centennial scale, the 19th century was recognized as the driest century. The drying tendency since 1960s was evident, however, recent drought was still within the frame of natural climate variability based on the 306 yr PDSI reconstruction. The warm and dry phases of Lingkong Mountain were in accordance with changes in the East Asian summer monsoon (EASM) strength, they also showed strong similarity to other tree-ring based moisture indexes in large areas in and around the CLP, indicating the moisture variability in the CLP was almost synchronous and closely related with EASM variation. Spatial correlation analysis suggested that this PDSI reconstruction could represent the moisture variations for most parts of the CLP, even larger area of northern China and east Mongolia. Multi-taper spectral analysis revealed significant cycles at the inter-annual (2.0–7.8 yr), inter-decadal (37.9 yr) and centennial (102 yr) scales, suggesting the influence of ENSO and solar activity on moisture conditions in the CLP. Results of this study are very helpful for us to improve the knowledge of past climate change in the CLP and enable us to prevent and manage future natural disasters.
Publisher
Copernicus GmbH
Reference74 articles.
1. Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., and Kromer, B.: Possible solar origin of the 1470 yr glacial climate cycle demonstrated in a coupled model, Nature, 438, 208–211, 2005. 2. Briffa, K. R. and Jones, P. D.: Basic chronology statistics and assessment, in: Methods of Dendrochronology, edited by: Cook, E. R. and Kairiukstis, L. A., Kluwer Academic Publishers, Dordrecht, 137–152, 1990. 3. Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 yr of European climate variability and human susceptibility, Science, 331, 578–582, 2011. 4. Cai, Q. F. and Liu, Y.: Climatic response of Chinese pine and PDSI variability in the middle Taihang Mountains, north China since 1873, Trees, 27, 419–427, 2013. 5. Cai, Q. F., Liu, Y., Song, H. M., and Sun, J. Y.: Tree-ring-based reconstruction of the April to September mean temperature since 1826 AD for north-central Shaanxi Province, China, Sci. China Ser. D, 51, 1099–1106, 2008.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|