NO<sub>x</sub> production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

Author:

Huntrieser H.,Schlager H.,Lichtenstern M.,Roiger A.,Stock P.,Minikin A.,Höller H.,Schmidt K.,Betz H.-D.,Allen G.,Viciani S.,Ulanovsky A.,Ravegnani F.,Brunner D.

Abstract

Abstract. During the SCOUT-O3/ACTIVE field phase in November–December 2005 airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228). Here a case study from 19 November is presented in large detail on the basis of airborne trace gas measurements (NO, NOy, CO, O3) and stroke measurements from the German LIghtning Location NETwork (LINET), set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: 1) a continental thunderstorm developing in a tropical airmass near Darwin, 2) a mesoscale convective system (MCS) developing within the tropical maritime continent (Tiwi Islands) known as Hector, and 3) a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol−1 in the main anvil outflow at ~11.5–12.5 km altitude. The mean NOx (=NO+NO2) mixing ratios during these penetrations (~100 km width) varied between 2.2 and 2.5 nmol mol−1. The NOx contribution from the boundary layer (BL), transported upward with the convection, to total anvil-NOx was found to be minor (<10%). On the basis of Falcon measurements, the mass flux of lightning-produced NOx (LNOx) in the well-developed Hector system was estimated to 0.6–0.7 kg(N) s−1. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s−1 (here only strokes with peak currents ≥10 kA contributing to LNOx were considered). The LNOx mass flux and the stroke rate were combined to estimate the LNOx production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with Lightning Imaging Sensor (LIS) flashes. The LNOx production rate per LIS flash was estimated to 4.1–4.8 kg(N) for the well-developed Hector system, and to 5.4 and 1.7 kg(N) for the continental thunderstorms developing in subtropical and tropical airmasses, respectively. If we assume, that these different types of thunderstorms are typical thunderstorms globally (LIS flash rate ~44 s−1), the annual global LNOx production rate based on Hector would be ~5.7–6.6 Tg(N) a−1 and based on the continental thunderstorms developing in subtropical and tropical airmasses ~7.6 and ~2.4 Tg(N) a−1, respectively. The latter thunderstorm type produced much less LNOx per flash compared to the subtropical and Hector thunderstorms, which may be caused by the shorter mean flash component length observed in this storm. It is suggested that the vertical wind shear influences the horizontal extension of the charged layers, which seems to play an important role for the flash lengths that may originate. In addition, the horizontal dimension of the anvil outflow and the cell organisation within the thunderstorm system are probably important parameters influencing flash length and hence LNOx production per flash.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3