Evidence of the water-cage effect on the photolysis of NO<sub>3</sub><sup>-</sup> and FeOH<sup>2+</sup>, and its implications for the photochemistry at the air-water interface of atmospheric droplets

Author:

Nissenson P.,Dabdub D.,Das R.,Maurino V.,Minero C.,Vione D.

Abstract

Abstract. Experiments are conducted to determine the photolysis quantum yields of nitrate, FeOH2+, and H2O2 in the bulk and at the surface layer of water. Results show that the quantum yields of nitrate and FeOH2+ are enhanced at the surface compared to the bulk due to a reduced water-cage surrounding the photo-fragments (•OH+•NO2 and Fe2++•OH, respectively). However, no evidence is found for an enhanced quantum yield for H2O2 at the surface. The photolysis rate constant distribution within nitrate, FeOH2+, and H2O2 aerosols is calculated by combining the quantum yield data with Mie theory calculations of light intensity. Values for the photolysis rate constant of nitrate and FeOH2+ are significantly higher at the surface than in the bulk due to enhanced quantum yields at the surface. The results concerning the rates of photolysis of these photoactive species are applied to the assessment of the reaction between benzene and •OH in the presence of •OH scavengers in an atmospherically relevant scenario. For a droplet of 1μm radius, a large fraction of the total •OH-benzene reaction (15% for H2O2, 20% for nitrate, and 35% for FeOH2+) occurs in the surface layer, which accounts for just 0.15% of the droplet volume. By neglecting the surface effects on photochemistry, the rate of the important reactions could be underestimated by a considerable amount.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3