Closing the Dimethyl Sulfide Budget in the Tropical Marine Boundary Layer during the Pacific Atmospheric Sulfur Experiment
Author:
Conley S. A.,Faloona I.,Miller G. H.,Blomquist B.,Lenschow D.,Bandy A.
Abstract
Abstract. Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR) C-130 near Christmas Island (2° N, 157° W) during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE). In order to tightly constrain the scalar budget of DMS, fluxes were measured at various levels in the marine boundary layer (MBL) from near the surface (30 m) to the top of the mixed layer (500 m) providing greater accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well known diurnal cycle, ranging from 50 pptv in the daytime to 110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data from within the MBL to estimate the mean gradients and trends. With this technique we consider the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for 7.3 ppt hr−1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt/hr. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g. reactive halogens.) The observed ocean flux of DMS averaged 3.1 (±1.5)μmol m−2 d−1, and generally decreased throughout the sunlit hours. The average entrainment flux at the top of the MBL was 2.5 μmol m−2 d−1; therefore the flux divergence term in the budget equation only contributed an average increase of 1.3 ppt hr−1 to the mean MBL mole fraction. Over the entire mission, the horizontal advection contribution to the overall budget was 0.2 ppt hr−1, indicating a mean atmospheric DMS gradient nearly perpendicular to the east-southeasterly trade winds and the chlorophyll gradient in the equatorial upwelling ocean. Nonetheless, horizontal advection was a significant term in the budget of any given flight, ranging from −1.5 to 2.3 ppt hr−1, indicating a patchy and random seawater DMS distribution, and thus needs to be accounted for in budget studies.
Publisher
Copernicus GmbH
Reference18 articles.
1. Bandy, A. R., Thornton, D. C., Tu, F. H., Blomquist, B. W., Nadler, W., Mitchell, G. M., and Lenschow, D. H.: Determination of the vertical flux of dimethyl sulfide by eddy correlation and atmospheric pressure ionization mass spectrometry (apims), J. Geophys. Res.-Atmos., 107, 4743, https://doi.org/10.1029/2002jd002472, 2002. 2. Blomquist, B. H. B. and Fairall, C. W.: Determining the sea-air flux of dimethylsulfide by eddy correlation using mass spectrometry, Unpublished Manuscript, 2009. 3. Blomquist, B. W., Fairall, C. W., Huebert, B. J., Kieber, D. J., and Westby, G. R.: Dms sea-air transfer velocity: Direct measurements by eddy covariance and parameterization based on the noaa/coare gas transfer model, Geophys. Res. Lett., 33, L07601, https://doi.org/10.1029/2006gl025735, 2006. 4. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature, 326, 655–661, 1987. 5. Chen, G., Davis, D., Crawford, J., Heikes, B., O'Sullivan, D., Lee, M., Eisele, F., Mauldin, L., Tanner, D., Collins, J., Barrick, J., Anderson, B., Blake, D., Bradshaw, J., Sandholm, S., Carroll, M., Albercook, G., and Clarke, A.: An assessment of hox chemistry in the tropical pacific boundary layer: Comparison of model simulations with observations recorded during pem tropics a, J. Atmos. Chem., 38, 317–344, 2001.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|