OMI total column ozone: extending the long term data record
Author:
McPeters R. D.,Frith S.,Labow G. J.
Abstract
Abstract. The ozone data record from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS-Aura satellite has proven to be very stable over the ten plus years of operation. The OMI total column ozone processed through the TOMS ozone retrieval algorithm (version 8.5) has been compared with ground based measurements and with ozone from a series of SBUV/2 instruments. Comparison with an ensemble of Brewer and Dobson sites shows an absolute offset of about 1.5 % but stability over the ten years to better than half a percent. Comparison with a merged ozone (MOD) data set created by combining data from a series of SBUV/2 instruments again shows an offset, of about 1 %, and a relative trend of less than half a percent over ten years. The offset is mostly due to the use of the old Bass and Paur ozone cross sections in the OMI retrievals rather than the Brion/Daumont/Malicet cross sections that are now recommended. The bias in the Southern Hemisphere is smaller than that in the Northern Hemisphere, 1 vs. 1.5 %, for reasons that are not completely understood. When OMI was compared with the European realization of a multi-instrument ozone time series, the GTO (GOME type ozone) dataset, there was a small trend of about −0.85 % decade−1. Since all the comparisons of OMI relative to other ozone measuring systems show relative trends that are less than 1 % decade−1, we conclude that the OMI total column ozone data are sufficiently stable that they can be used in studies of ozone trends.
Funder
Goddard Space Flight Center
Publisher
Copernicus GmbH
Reference18 articles.
1. Bass, A. M. and Paur, R. J.: The ultraviolet cross-sections of ozone. I. The measurements, in: Proc. Quadrenniel Ozone Symp., Halkidiki, Greece, 3–7 September 1984, edited by: Zerefos, C. and Ghazi, A., Reidel, Dordecht, 606–616, 1984. 2. Bhartia, P. K.: Total ozone from backscattered ultraviolet measurements, in: Observing Systems for Atmospheric Composition, edited by: Visconti, G., Di Carlo, P., Brune, W., Schoeberl, W., and Wahner, A., Springer, L'Aquila, Italy, 48–63, 2007. 3. Bhartia, P. K., McPeters, R. D., Flynn, L. E., Taylor, S., Kramarova, N. A., Frith, S., Fisher, B., and DeLand, M.: Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, 2013. 4. Brion, J., Chakir, A., Daumont, D., Malicet, J., and Parisse, C.: High resolution laboratory absorption cross section of O3 temperature effect, Chem. Phys. Lett., 213, 610–612, 1993. 5. Chiou, E. W., Bhartia, P. K., McPeters, R. D., Loyola, D. G., Coldewey-Egbers, M., Fioletov, V. E., Van Roozendael, M., Spurr, R., Lerot, C., and Frith, S. M.: Comparison of profile total ozone from SBUV (v8.6) with GOME-type and ground-based total ozone for a 16-year period (1996 to 2011), Atmos. Meas. Tech., 7, 1681–1692, https://doi.org/10.5194/amt-7-1681-2014, 2014.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|