Estimating suspended sediment concentrations using a broadband ADCP in Mahshahr tidal channel

Author:

Ghaffari P.,Azizpour J.,Noranian M.,Chegini V.,Tavakoli V.,Shah-Hosseini M.

Abstract

Abstract. Data sets of Acoustic Doppler Current Profiler (ADCP) backscatter intensities (ABS) were used to evaluate suspended sediment concentrations (SSC) in the Mahshahr Channel (MC) of the Persian Gulf. Since the echo intensity is closely related to turbidity in water, the ADCP may be a promising tool to monitor the sediment transport. The low susceptibility of the acoustic backscatter to bio-fouling and the ADCP provision of current profiles as well as sediment time series makes this monitoring method more advantageous compared with the traditional methods. Time series of ADCP backscatter intensity profiles were used for improving temporal resolution of SSC estimates. Backscatter and traditional observational data were separated into two segments. The first part was utilized for calibrating the backscatter data and attributing the intensity to suspended particle concentrations and using the second part acoustic intensities were validated. Acoustic based SSC estimates are slightly underestimated in comparison with traditional water sample based SSC values, but still there is good agreement between acoustic SSC and traditional observations. Results illustrate a rather high correlation between lab based and acoustic based particles in suspension (R2 = 88 %). Additionally measurements reveal the domination of a semidiurnal ebb asymmetric system in the MC. Tidal currents provide the main energy source for particle resuspension and transport. Maximum suspended load concentrations are evident in ebb tides, while the currents strengths are enough to refloat loads from the bed. In general spring tides show higher SSC values compared with neap tides in the study area.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3