The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins

Author:

Pusok Adina E.ORCID,Stegman Dave R.,Kerr Madeleine

Abstract

Abstract. Observations of sediments at subduction margins appear to divide them into two classes: accretionary and erosive. Accretionary margins are dominated by accretion of thick piles of sediments (>1 km) from the subducting plate, while tectonic erosion is favored in regions with little or no sedimentary cover (<1 km). The consequences of the two styles of margins for subduction dynamics remain poorly resolved. In this study, we used 2-D numerical simulations of subduction to investigate how low-viscosity sediments influence subduction dynamics and margin type through plate coupling. We vary the thickness and viscosity of the sediment layer entering subduction, the thickness of the upper plate, and the driving velocity of the subducting plate (i.e., kinematic boundary conditions). Diagnostic parameters are extracted automatically from numerical simulations to analyze the dynamics and differentiate between modes of subduction margin. We identify three margin types based on the extent of viscous coupling in the sediment layer at the subduction interface: (a) tectonic coupling margin, (b) low-angle accretionary wedge margin, and (c) high-angle accretionary wedge margin. In the tectonic coupling case – analogous to an erosive margin – high-viscosity or thin-layer sediments increase coupling at the interface. On the other hand, when the viscous coupling is reduced, sediments are scrapped off the subducting slab to form an accretionary wedge. Models that develop tectonic coupling margins show small radii of curvature, slow convergence rates, and thin subduction interfaces, while models with accretionary margins show large radii of curvature, faster convergence rates, and dynamic accretionary wedges. These diagnostic parameters are then linked with observations of present-day subduction zones.

Funder

United States Science Support Program

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3