1. Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758, 1999. a
2. Azzi, M., Johnson, G., and Cope, M.: An introduction to the generic reaction
set photochemical smog mechanism, Proceedings of the International Conference
of the Clean Air Society of Australia and New Zealand, 3, 451–462, 1992. a
3. Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and
Raynaud, L.: A variational assimilation ensemble and the spatial filtering of
its error covariances: increase of sample size by local spatial averaging,
in: ECMWF Workshop on Flow-dependent aspecyts of data assimilation, 11–13
June 2007, edited by: ECMWF, Reading, UK, 151–168, https://www.ecmwf.int/sites/default/files/elibrary/2007/8172-variational-assimilation-ensemble-and-spatial-filtering-its-error-covariances-increase-sample.pdf (last access: 9 June 2023), 2007. a, b
4. Cohn, S.: Dynamics of Short-Term Univariate Forecast Error Covariances, Mon.
Weather Rev., 121, 3123–3149,
https://doi.org/10.1175/1520-0493(1993)121<3123:DOSTUF>2.0.CO;2, 1993. a, b
5. Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G., Gaubert, B., Ung, A., Schmechtig, C., Flaud, J.-M., and Bergametti, G.: Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe, Atmos. Chem. Phys., 12, 2513–2532, https://doi.org/10.5194/acp-12-2513-2012, 2012. a