Using present-day observations to detect when anthropogenic change forces
surface ocean carbonate chemistry outside preindustrial bounds
-
Published:2016-09-13
Issue:17
Volume:13
Page:5065-5083
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Sutton Adrienne J.ORCID, Sabine Christopher L., Feely Richard A., Cai Wei-Jun, Cronin Meghan F., McPhaden Michael J., Morell Julio M., Newton Jan A., Noh Jae-Hoon, Ólafsdóttir Sólveig R.ORCID, Salisbury Joseph E.ORCID, Send Uwe, Vandemark Douglas C., Weller Robert A.
Abstract
Abstract. One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference69 articles.
1. Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification, Nature, 531, 362–365, 2016. 2. Alford, M. H., Mickett, J. B., Zhang, S., MacCready, P., Zhao, Z., and Newton, J.: Internal waves on the Washington continental shelf, Oceanography, 25, 66–79, 2012. 3. Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., and Feely, R. A.: The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects, Limnol. Oceanogr., 57, 698–710, 2012. 4. Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, Oceanography, 27, 126–141, 2014. 5. Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, 2013.
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|