Changes in groundwater drought associated with anthropogenic warming

Author:

Bloomfield John P.ORCID,Marchant Benjamin P.,McKenzie Andrew A.

Abstract

Abstract. Here we present the first empirical evidence for changes in groundwater drought associated with anthropogenic warming in the absence of long-term changes in precipitation. Analysing standardised indices of monthly groundwater levels, precipitation and temperature, using two unique groundwater level data sets from the Chalk aquifer, UK, for the period 1891 to 2015, we show that precipitation deficits are the main control on groundwater drought formation and propagation. However, long-term changes in groundwater drought are shown to be associated with anthropogenic warming over the study period. These include increases in the frequency and intensity of individual groundwater drought months, and increases in the frequency, magnitude and intensity of episodes of groundwater drought, as well as an increasing tendency for both longer episodes of groundwater drought and for an increase in droughts of less than 1 year in duration. We also identify a transition from a coincidence of episodes of groundwater drought with precipitation droughts at the end of the 19th century, to an increasing coincidence with both precipitation droughts and with hot periods in the early 21st century. In the absence of long-term changes in precipitation deficits, we infer that the changing nature of groundwater droughts is due to changes in evapotranspiration (ET) associated with anthropogenic warming. We note that although the water tables are relatively deep at the two study sites, a thick capillary fringe of at least 30 m in the Chalk means that ET should not be limited by precipitation at either site. ET may be supported by groundwater through major episodes of groundwater drought and, hence, long-term changes in ET associated with anthropogenic warming may drive long-term changes in groundwater drought phenomena in the Chalk aquifer. Given the extent of shallow groundwater globally, anthropogenic warming may widely effect changes to groundwater drought characteristics in temperate environments.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3