Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming

Author:

Xu Hongmei,Liu Lüliu,Wang Yong,Wang Sheng,Hao Ying,Ma Jingjin,Jiang TongORCID

Abstract

Abstract. To quantify climate change impact and difference on basin-scale river runoff under the limiting global warming thresholds of 1.5 and 2.0 ∘C, this study examined four river basins covering a wide hydroclimatic setting. We analyzed projected climate change in four basins, quantified climate change impact on annual and seasonal runoff based on the Soil Water Assessment Tool, and estimated the uncertainty constrained by the global circulation model (GCM) structure and the representative concentration pathways (RCPs). All statistics for the two river basins (the Shiyang River, SYR, and the Chaobai River, CBR) located in northern China indicated generally warmer and wetter conditions, whereas the two river basins (the Huaihe River, HHR, and the Fujiang River, FJR) located in southern China projected less warming and were inconsistent regarding annual precipitation change. The simulated changes in annual runoff were complex; however, there was no shift in seasonal runoff pattern. The 0.5 ∘C global warming difference resulted in 0.7 and 0.6 ∘C warming in basins in northern and southern China, respectively. This led to a projected precipitation increase by about 2 % for the four basins and to a decrease in simulated annual runoff of 8 % and 1 % in the SYR and the HHR, respectively, but to an increase of 4 % in the CBR and the FJR. The uncertainty in projected annual temperature was dominated by the GCMs or the RCPs; however, that of precipitation was constrained mainly by the GCMs. The 0.5 ∘C difference decreased the uncertainty in the annual precipitation projection and the annual and monthly runoff simulation.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3