Characterizing the potential for drought action from combined hydrological and societal perspectives

Author:

Towler Erin,Lazrus Heather,PaiMazumder Debasish

Abstract

Abstract. Drought is a function of both natural and human influences, but fully characterizing the interactions between human and natural influences on drought remains challenging. To better characterize parts of the drought feedback loop, this study combines hydrological and societal perspectives to characterize and quantify the potential for drought action. For the hydrological perspective, we examine historical groundwater data, from which we determine the decadal likelihoods of exceeding hydrologic thresholds relevant to different water uses. Stakeholder interviews yield data about how people rate the importance of water for different water uses. We combine these to quantify the Potential Drought Action Indicator (PDAI). The PDAI is demonstrated for a study site in south-central Oklahoma, where water availability is highly influenced by drought and management of water resources is contested by local stakeholders. For the hydrological perspective, we find that the historical decadal likelihood of exceedance for a moderate threshold associated with municipal supply has ranged widely: from 23 % to 75 %, which corresponds well with natural drought variability in the region. For the societal perspective, stakeholder interviews reveal that people value water differently for various uses. Combining this information into the PDAI illustrates that potential drought action increases as the hydrologic threshold is exceeded more often; this occurs as conditions get drier and when water use thresholds are more moderate. The PDAI also shows that for water uses where stakeholders have diverse views of importance, the PDAI will be diverse as well, and this is exacerbated under drier conditions. The variability in stakeholder views of importance is partially explained by stakeholders' cultural worldviews, pointing to some implications for managing water when drought risks threaten. We discuss how the results can be used to reduce potential disagreement among stakeholders and promote sustainable water management, which is particularly important for planning under increasing drought.

Funder

National Oceanic and Atmospheric Administration

Division of Atmospheric and Geospace Sciences

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3