Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK

Author:

Barker Lucy J.ORCID,Hannaford Jamie,Parry Simon,Smith Katie A.ORCID,Tanguy MalikoORCID,Prudhomme ChristelORCID

Abstract

Abstract. Hydrological droughts occur in all climate zones and can have severe impacts on society and the environment. Understanding historical drought occurrence and quantifying severity is crucial for underpinning drought risk assessments and developing drought management plans. However, hydrometric records are often short and capture only a limited range of variability. The UK is no exception: numerous severe droughts over the past 50 years have been well captured by observations from a dense hydrometric network. However, a lack of long-term observations means that our understanding of drought events in the early 20th century and late 19th century is limited. Here we take advantage of new reconstructed flow series for 1891 to 2015 to identify and characterise historic hydrological droughts for 108 near-natural catchments across the UK using the standardised streamflow index (SSI). The identified events are ranked according to four event characteristics (duration, accumulated deficit, mean deficit and maximum intensity), and their severity is reviewed in the context of events of the recent past (i.e. the last 50 years). This study represents the first national-scale assessment and ranking of hydrological droughts. Whilst known major drought events were identified, we also shed light on events which were regionally important, such as those in 1921 and 1984 (which were important in the south-east and north-west of the UK, respectively). Events which have been poorly documented, such as those of the 1940s in the post-war years or the early 1970s (prior to the landmark 1975–1976 event), were found to be important in terms of their spatial coverage and severity. This improved knowledge of historic events can support improved long-term water resource planning approaches. Given the universal importance of historical drought appraisal, our systematic approach to historical drought assessment provides a methodology that could be applied in other settings internationally.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference71 articles.

1. Adaptation Sub-Committee: UK Climate Change Risk Assessment 2017: Synthesis Report: priorities for the next five years, Adaptation Sub-Committee of the Committee on Climate Change, London, 2016.

2. Anderton, S., Ledbetter, R., and Prudhomme, C.: Understanding the performance of water supply systems during mild to extreme droughts, Environment Agency, Bristol, 2015.

3. Atkins: Thames Water Stochastic Resource Modelling: Stage 2&3 Report, Atkins, availabel at: https://corporate.thameswater.co.uk/-/media/Site-Content/Corporate/Media/Thames-Water-Reports-Page/Stochastics-Water-Resources-Analysis-October-2016.pdf (last access: 1 November 2019), 2016.

4. Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton, I. C.: Drought indicators revisited: the need for a wider consideration of environment and society, Wiley Interdisciplin. Rev.: Water, 3, 516–536, https://doi.org/10.1002/wat2.1154, 2016a.

5. Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016b.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3