Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics

Author:

Vittecoq BenoitORCID,Reninger Pierre-Alexandre,Lacquement Frédéric,Martelet Guillaume,Violette Sophie

Abstract

Abstract. We conducted a multidisciplinary study at the watershed scale of an andesitic-type volcanic island in order to better characterize the hydrogeological functioning of aquifers and to better evaluate groundwater resources. A heliborne Time Domain ElectroMagnetic (TDEM) survey was conducted over Martinique in order to investigate underground volcanic structures and lithology, characterized by high lateral and vertical geological variability and resulting in a very high heterogeneity of their hydrogeological characteristics. Correlations were made on three adjacent watersheds between resistivity data along flight lines and geological and hydrogeological data from 51 boreholes and 24 springs, showing that the younger the formations, the higher their resistivity. Correlation between resistivity, geology and transmissivity data of three aquifers is attested: within the interval 10–100 ohm m and within a range of 1 to 5.5 Ma, the older the formation, the lower its resistivity, and the older the formation, the higher its transmissivity. Moreover, we demonstrate that the main geological structures lead to preferential flow circulations and that hydrogeological watersheds can differ from topographical watersheds. The consequence is that, even if the topographical watershed is small, underground flows from an adjacent watershed can add significant amounts of water to such a catchment. This effect is amplified when lava domes and their roots are situated upstream, as they present very high hydraulic conductivity leading to deep preferential groundwater flow circulations. We also reveal, unlike basaltic-type volcanic islands, that hydraulic conductivity increases with age in this andesitic-type volcanic island. This trend is interpreted as the consequence of tectonic fracturing associated with earthquakes in this subduction zone, related to andesitic volcanic islands. Finally, our approach allows characterization in detail of the hydrogeological functioning and identification of the properties of the main aquifer and aquitard units, leading to the proposition of a hydrogeological conceptual model at the watershed scale. This working scale seems particularly suitable due to the complexity of edifices, with heterogeneous geological formations presenting high lateral and vertical variability. Moreover, our study offers new guidelines for accurate correlations between resistivity, geology and hydraulic conductivity for volcanic islands. Finally, our results will also help stakeholders toward a better management of water resources.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference69 articles.

1. Arnaud, L. and Lanini, S.: Impact du changement climatique sur les ressources en eau de Martinique, Openfile BRGM Report RP-62676-FR, available at: http://infoterre.brgm.fr/rapports//RP-62676-FR.pdf, (last access: 7 May 2019), 2014.

2. Auken, E., Christiansen, A. V., Westergaard, J. H., Kirkegaard, C., Foged, N., and Viezzoli, A.: An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Explor. Geophys., 40, 184–192, 2009.

3. Bogie, I. and Mackenzie, K.: The application of a volcanic facies model to an andesitic stratovolcano hosted geothermal system at Wayang Windu, Java, Indonesia, in: Proceedings 20th NZ Geothermal Workshop, Aukland, 265–270, 1998.

4. Boudon, G., Le Friant, A., Komorowski, J.-C., Deplus, C., and Semet, M. P.: Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence, J. Geophys. Res., 112, B08205, https://doi.org/10.1029/2006JB004674, 2007.

5. Browne, P. R. L.: Hydrothermal alteration as an aid in investigating geothermal fields, Geothermics, 2, 564–570, https://doi.org/10.1016/0375-6505(70)90057-X, 1970.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3