Assessing the characteristics and drivers of compound flooding events around the UK coast
-
Published:2019-07-23
Issue:7
Volume:23
Page:3117-3139
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Hendry AlistairORCID, Haigh Ivan D., Nicholls Robert J.ORCID, Winter HugoORCID, Neal Robert, Wahl ThomasORCID, Joly-Laugel Amélie, Darby Stephen E.ORCID
Abstract
Abstract. In low-lying coastal regions, flooding arises from oceanographic (storm
surges plus tides and/or waves), fluvial (increased river discharge), and/or
pluvial (direct surface run-off) sources. The adverse consequences of a flood
can be disproportionately large when these different sources occur
concurrently or in close succession, a phenomenon that is known as
“compound flooding”. In this paper, we assess the potential for compound
flooding arising from the joint occurrence of high storm surge and high
river discharge around the coast of the UK. We hypothesise that there will be
spatial variation in compound flood frequency, with some coastal regions
experiencing a greater dependency between the two flooding sources than
others. We map the dependence between high skew surges and high river
discharge, considering 326 river stations linked to 33 tide gauge sites. We
find that the joint occurrence of high skew surges and high river discharge
occurs more frequently during the study period (15–50 years) at sites on the
south-western and western coasts of the UK (between three and six joint events per
decade) compared to sites along the eastern coast (between zero and one joint
events per decade). Second, we investigate the meteorological conditions
that drive compound and non-compound events across the UK. We show, for the
first time, that spatial variability in the dependence and number of joint
occurrences of high skew surges and high river discharge is driven by
meteorological differences in storm characteristics. On the western coast of
the UK, the storms that generate high skew surges and high river discharge
are typically similar in characteristics and track across the UK on
comparable pathways. In contrast, on the eastern coast, the storms that
typically generate high skew surges are mostly distinct from the types of
storms that tend to generate high river discharge. Third, we briefly examine
how the phase and strength of dependence between high skew surge and high
river discharge is influenced by the characteristics (i.e. flashiness, size,
and elevation gradient) of the corresponding river catchments. We find that high
skew surges tend to occur more frequently with high river discharge at
catchments with a lower base flow index, smaller catchment area, and steeper
elevation gradient. In catchments with a high base flow index, large
catchment area, and shallow elevation gradient, the peak river flow tends to
occur several days after the high skew surge. The previous lack of
consideration of compound flooding means that flood risk has likely been
underestimated around UK coasts, particularly along the south-western and western
coasts. It is crucial that this be addressed in future assessments of flood
risk and flood management approaches.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference60 articles.
1. Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017. 2. British Oceanographic Data Centre: UK Tide Gauge Network, available at: https://www.bodc.ac.uk/data/online_delivery/ntslf/, last access: 22 March 2017. 3. Brown, S. and Nicholls, R. J.: Subsidence and human influences in mega
deltas: The case of the Ganges-Brahmaputra-Meghna, Sci. Total Environ.,
527–528, 362–374, https://doi.org/10.1016/j.scitotenv.2015.04.124, 2015. 4. Brown, S., Nicholls, R. J., Goodwin, P., Haigh, I. D., Lincke, D., Vafeidis,
A. T., and Hinkel, J.: Quantifying Land and People Exposed to Sea-Level Rise
with No Mitigation and 1.5 ∘C and 2.0 ∘C Rise in Global
Temperatures to Year 2300, Earths Futurure, 6, 583–600,
https://doi.org/10.1002/2017EF000738, 2018. 5. Burt, S. D. and Mansfield, D.: The Great Storm of 15–16 October 1987,
Weather, 43, 90–110, 1988.
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|