A virtual hydrological framework for evaluation of stochastic rainfall models

Author:

Bennett BreeORCID,Thyer MarkORCID,Leonard Michael,Lambert Martin,Bates Bryson

Abstract

Abstract. Stochastic rainfall modelling is a commonly used technique for evaluating the impact of flooding, drought, or climate change in a catchment. While considerable attention has been given to the development of stochastic rainfall models (SRMs), significantly less attention has been paid to developing methods to evaluate their performance. Typical evaluation methods employ a wide range of rainfall statistics. However, they give limited understanding about which rainfall statistical characteristics are most important for reliable streamflow prediction. To address this issue a formal evaluation framework is introduced, with three key features: (i) streamflow-based, to give a direct evaluation of modelled streamflow performance, (ii) virtual, to avoid the issue of confounding errors in hydrological models or data, and (iii) targeted, to isolate the source of errors according to specific sites and seasons. The virtual hydrological evaluation framework uses two types of tests, integrated tests and unit tests, to attribute deficiencies that impact on streamflow to their original source in the SRM according to site and season. The framework is applied to a case study of 22 sites in South Australia with a strong seasonal cycle. In this case study, the framework demonstrated the surprising result that apparently “good” modelled rainfall can produce “poor” streamflow predictions, whilst “poor” modelled rainfall may lead to “good” streamflow predictions. This is due to the representation of highly seasonal catchment processes within the hydrological model that can dampen or amplify rainfall errors when converted to streamflow. The framework identified the importance of rainfall in the “wetting-up” months (months where the rainfall is high but streamflow low) of the annual hydrologic cycle (May and June in this case study) for providing reliable predictions of streamflow over the entire year despite their low monthly flow volume. This insight would not have been found using existing methods and highlights the importance of the virtual hydrological evaluation framework for SRM evaluation.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3