Impact of stress regime change on the permeability of a naturally fractured carbonate buildup (Latemar, the Dolomites, northern Italy)

Author:

Igbokwe Onyedika AnthonyORCID,Timothy Jithender J.,Kumar AshwaniORCID,Yan Xiao,Mueller MathiasORCID,Verdecchia AlessandroORCID,Meschke Günther,Immenhauser AdrianORCID

Abstract

Abstract. Changing stress regimes control fracture network geometry and influence porosity and permeability in carbonate reservoirs. Using outcrop data analysis and a displacement-based linear elastic finite-element method, we investigate the impact of stress regime change on fracture network permeability. The model is based on fracture networks, specifically fracture substructures. The Latemar, predominantly affected by subsidence deformation and Alpine compression, is taken as an outcrop analogue for an isolated (Mesozoic) carbonate buildup with fracture-dominated permeability. We apply a novel strategy involving two compressive boundary loading conditions constrained by the study area's NW–SE and N–S stress directions. Stress-dependent heterogeneous apertures and effective permeability were computed in the 2D domain by (i) using the local stress state within the fracture substructure and (ii) running a single-phase flow analysis considering the fracture apertures in each fracture substructure. Our results show that the impact of the modelled far-field stresses at (i) subsidence deformation from the NW–SE and (ii) Alpine deformation from N–S increased the overall fracture aperture and permeability. In each case, increasing permeability is associated with open fractures parallel to the orientation of the loading stages and with fracture densities. The anisotropy of permeability is increased by the density and connectedness of the fracture network and affected by shear dilation. The two far-field stresses simultaneously acting within the selected fracture substructure at a different magnitude and orientation do not necessarily cancel each other out in the mechanical deformation modelling. These stresses affect the overall aperture and permeability distributions and the flow patterns. These effects – potentially ignored in simpler stress-dependent permeability – can result in significant inaccuracies in permeability estimation.

Funder

Petroleum Technology Development Fund

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3