Update on emissions and environmental impacts from the international fleet of ships: the contribution from major ship types and ports

Author:

Dalsøren S. B.,Eide M. S.,Endresen Ø.,Mjelde A.,Gravir G.,Isaksen I. S. A.

Abstract

Abstract. A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO2, NO2, SO2, CO, CH4, VOC (Volatile Organic Compounds), N2O, BC (Black Carbon) and OC (Organic Carbon). The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions. A global Chemical Transport Model (CTM) was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO2 and SO2. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over Western North America (contribution 15–25%) and Western Europe (5–15%). The contribution to tropospheric column ozone is up to 5–6%. The overall impact of ship emissions on global methane lifetime is large due to the high NOx emissions. With regard to acidification we find that ships contribute 11% to nitrate wet deposition and 4.5% to sulphur wet deposition globally. In certain coastal regions the contributions may be in the range 15–50%. In general we find that ship emissions have a large impact on acidic deposition and surface ozone in Western North America, Scandinavia, Western Europe, western North Africa and Malaysia/Indonesia. For most of these regions container traffic, the largest emitter by ship type, has the largest impact. This is the case especially for the Pacific and the related container trade routes between Asia and North America. However, the contributions from bulk ships and tank vessels are also significant in the above mentioned impact regions. Though the total ship impact at low latitudes is lower, the tank vessels have a quite large contribution at low latitudes and near the Gulf of Mexico and Middle East. The bulk ships are characterized by large impact in Oceania compared to other ship types. In Scandinavia and north-Western Europe, one of the major ship impact regions, the three largest ship types have rather small relative contributions. The impact in this region is probably dominated by smaller ships operating closer to the coast. For emissions in ports impacts on NO2 and SO2 seem to be of significance. For most ports the contribution to the two components is in the range 0.5–5%, for a few ports it exceeds 10%. The approach presented provides an improvement in characterizing fleet operational patterns, and thereby ship emissions and impacts. Furthermore, the study shows where emission reductions can be applied to most effectively minimize the impacts by different ship types.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3