Evaluation of a plot scale methane emission model at the ecosystem scale using eddy covariance observations and footprint modelling
Author:
Budishchev A.ORCID, Mi Y., van Huissteden J.ORCID, Belelli-Marchesini L.ORCID, Schaepman-Strub G.ORCID, Parmentier F. J. W.ORCID, Fratini G.ORCID, Gallagher A., Maximov T. C., Dolman A. J.ORCID
Abstract
Abstract. Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of closed-chamber measurements, and by comparing those to the eddy covariance (EC) flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily time scale are also captured (r2 = 0.7). In contrast, using the area-weighted average method yielded a low (r2 = 0.14) correlation with the EC measurements and an underestimation of methane emissions by 27.4%. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.
Publisher
Copernicus GmbH
Reference54 articles.
1. Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology., Adv. Ecol. Res., 30, 113–175, 2000. 2. Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer, Dordrecht, the Netherlands, 2012. 3. Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, 2003. 4. Becker, T., Kutzbach, L., Forbrich, I., Schneider, J., Jager, D., Thees, B., and Wilmking, M.: Do we miss the hot spots? – The use of very high resolution aerial photographs to quantify carbon fluxes in peatlands, Biogeosciences, 5, 1387–1393, https://doi.org/10.5194/bg-5-1387-2008, 2008. 5. Bekki, S. and Law, K. S.: Sensitivity of the atmospheric CH4 growth rate to global temperature changes observed from 1980 to 1992, Tellus B, 49, 409–416, 1997.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|