Heavy rainfall episodes over Liguria of autumn 2011: numerical forecasting experiments

Author:

Buzzi A.,Davolio S.ORCID,Malguzzi P.,Drofa O.,Mastrangelo D.

Abstract

Abstract. The Liguria coastal region in Italy was affected by two heavy rainfall and consequent severe flood episodes that occurred at the end of October and beginning of November 2011. The very large accumulated precipitation maxima were associated, in both cases, with intense and quasi-stationary convective systems developed near the coast, both related to orographic lift and similar low-level mesoscale flow patterns over the Ligurian Sea, giving rise to pronounced convergence lines. This study aims at analyzing the main dynamical processes responsible for the onset, lifecycle, intensity and localization/propagation of the precipitating systems, using the ISAC convection-permitting model MOLOCH applied at different spatial resolutions and comparing model output fields with available observations. The ability of the model in forecasting quantitative precipitation (QPF) is tested with respect to initial analysis and model horizontal resolution. Although precipitation maxima remain underestimated in the model experiments, it is shown that forecast errors of QPF in both amount and position tend to decrease with increasing grid resolution. It is shown that model accuracy in forecasting rainfall amounts and localization of the precipitating systems critically depends, in both episodes, on the ability in representing the cold air outflow from the Po Valley to the Ligurian Sea, which determines the position and intensity of the mesoscale convergence lines over the sea. Such convergence lines controls, together with the lifting produced by the Apennines chain surrounding the coast, the onset of the severe convection.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3