New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water
-
Published:2018-01-19
Issue:1
Volume:11
Page:429-439
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Witek Marcin L.ORCID, Garay Michael J., Diner David J., Bull Michael A., Seidel Felix C.ORCID
Abstract
Abstract. A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR)
observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and
pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22)
operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of
these values to compute the final, “best estimate” AOD and associated uncertainty. The new approach considers the entire range of
cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute
values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and
(c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike
the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of
a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD
retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥0.15 as a condition for retrieval success is
supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR
dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference38 articles.
1. Abdou, W. A., Martonchik, J. V, Kahn, R. A., West, R. A., and Diner, D. J.: A modified linear-mixing method for calculating
atmospheric path radiances of aerosol mixtures, J. Geophys. Res.-Atmos., 102, 16883–16888, https://doi.org/10.1029/96JD03434, 1997. 2. Bréon, F. M., Vermeulen, A., and Descloitres, J.: An evaluation of satellite aerosol products against sunphotometer
measurements, Remote Sens. Environ., 115, 3102–3111, https://doi.org/10.1016/j.rse.2011.06.017, 2011. 3. Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. V., Ackerman, T. P.,
Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B., and Verstraete, M. M.:
Multiangle Image Spectroradiometer (MISR) instrument description and experiment overview, IEEE T. Geosci. Remote, 36, 1072–1087,
1998. 4. Diner, D. J., Martonchik, J. V., Kahn, R. A., Pinty, B., Gobron, N., Nelson, D. L., and Holben, B. N.: Using angular and
spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land, Remote Sens. Environ., 94, 155–171,
https://doi.org/10.1016/j.rse.2004.09.009, 2005. 5. Diner, D. J., Abdou, W. A., Ackerman, T. P., Crean, K., Gordon, H. R., Kahn, R. A., Martonchik, J. V, McMuldroch, S.,
Paradise, S. R., and Pinty, B.: Level 2 Aerosol Retrieval Algorithm Theoretical Basis, Jet Propuls. Lab. Calif. Inst. Technol.,
available at: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-09.pdf (last access: 12 January 2018), 2008.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|