Observation and simulation of wave breaking in the southern hemispheric stratosphere during VORCORE

Author:

Moustaoui M.,Teitelbaum H.,Mahalov A.

Abstract

Abstract. An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In this case, the balloon was caught within a tongue of high potential vorticity (PV), and was ejected from the polar vortex. The evolution of this event is studied for the period between 19 and 25 November 2005. It is found that at the beginning of this period, the polar vortex experienced distortions due to the presence of Rossby waves. Then, these waves break and a tongue of high PV develops. On 25 November, the tongue became separated from the vortex and the balloon was ejected into the surf zone. Lagrangian simulations demonstrate that the air masses surrounding the balloon after its ejection were originating from the vortex edge. The wave breaking and the development of the tongue are confined within a region where a planetary Quasi-Stationary Wave 1 (QSW1) induces wind speeds with weaker values. The QSW1 causes asymmetry in the wind speed and the horizontal PV gradient along the edge of the polar vortex, resulting in a localized jet. Rossby waves with smaller scales propagating on top of this jet amplify as they enter the jet exit region and then break. The role of the QSW1 on the formation of the weak flow conditions that caused the non-linear wave breaking observed near the vortex edge is confirmed by three-dimensional numerical simulations using forcing with and without the contribution of the QSW1.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference3 articles.

1. Dritschel, D. G.: Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows, Computer Physics Reports, 10, 77–146, 1989. \\bibitem[]{} Dritschel, D. G., Haynes, P. H., Juckes, M. N., and Shepherd, T. G.: The stability of a two-dimensional vorticity filament under uniform strain, J. Fluid Mech., 230, 647–665, 1991. \\bibitem[]{} Esler, J. G. and Haynes, P. H.: Baroclinic Wave Breaking and the Internal Variability of the Tropospheric Circulation, J. Atmos. Sci., 56, 4014–4031, 1999.

2. Geller, M. A. and Wu, M. F.: Troposphere-stratosphere general circulation statistics, Transport Processes in the Middle Atmosphere, edited by: Visconti, G. and Garcia, R., Reidel, 3–17, 1987. \\bibitem[]{} Hartman, D. L.: Stationary planetary waves in the Southern Hemisphere, J. Geophys. Res., 77, 437–471, 1977. \\bibitem[]{} Haynes, P.: Stratospheric Dynamic, Annu. Rev. Fluid Mech., 37, 263–293, 2005. \\bibitem[]{} Haynes, P. H., Poet, D. A., and Shuckburgh, E. F.: Transport and mixing in kinematic and dynamically consistent flows, J. Atmos. Sci., 64, 3640–3651, 2007. \\bibitem[]{} Hitchman, M. H. and Huesmann, A. S.: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer, J. Atmos. Sci., 64, 1922–1940, 2007. \\bibitem[]{} Karpetchko, A.,Kyrnd, E., and Knudsen, B. M.: Arctic and Antarctic polar vortices 1957–2002 as seen from the ERA-40 reanalyses, J. Geophys. Res., 110, D21109, https://doi.org/10.1029/2005JD006113, 2005. \\bibitem[]{} Legras, B., Dritschel, D. G., and Calliol, P.: The erosion of a distributed two-dimensional vortex in a background straining flow, J. Fluid Mech., 441, 369–398, 2001. \\bibitem[]{} Mariotti, A., Moustaoui, M., Legras, B., and Teitelbaum, H.: Comparison between vertical ozone soundings and reconstructed potential vorticity maps by contour advectionwith surgery, J. Geophys. Res., 102, 6131–6142, 1997. \\bibitem[]{} McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the stratosphere, Nature, 305, 593–600, 1983. \\bibitem[]{} McIntyre, M. E. and Palmer, T. N.: The surf zone in the stratosphere, J. Atmos. Terr. Phys., 46, 825–849, 1984. \\bibitem[]{} McIntyre, M. E. and Palmer, T. N.: A note on the general concept of wave breaking for Rossby and gravity waves, Pure Appl. Geophys., 123, 964–975, 1985. \\bibitem[]{} Moustaoui, M., Teitelbaum, H., and Valero, F. P. J.: Ozone laminae inside the Antactic vortex produced by pole- ward filaments, Q. J. Roy. Meteorol. Soc., 129, 3121–3136, 2003a. \\bibitem[]{} Moustaoui, M., Teitelbaum, H., and Valero, F. P. J.: Vertical displacements induced by quasi-stationnary waves in the southern Hemisphere during spring, Mon. Weather Rev., 131, 2279–2289, 2003b. \\bibitem[]{} Nakamura, M. and Plumb, R. A.: The effects of flow asymmetry on the direction of Rossby wave breaking, J. Atmos. Sci., 51, 2031–2045, 1994. \\bibitem[]{} Ndarana, T. and Waugh, D. W.: A Climatology of Rossby Wave Breaking on the Southern Hemisphere Tropopause, J. Atmos. Sci., 68, 798–811, 2011. \\bibitem[]{} Orlanski, I.: Bifurcation in Eddy Life Cycles: Implications for storm track variability, J. Atmos. Sci., 60, 993–1023, 2003. \\bibitem[]{} Peters, D. and Waugh, D. W.: Influence of barotropic shear on the poleward advection of upper tropospheric air, J. Atmos. Sci., 53, 3013–3031, 1996. \\bibitem[]{} Peters, D. and Waugh, D. W.: Rossby Wave Breaking in the Southern Hemisphere Wintertime Upper Troposphere, Mon. Weather Rev., 131, 2623–2634, 2003. \\bibitem[]{} Plumb, R. A.: Stratospheric transport, J. Meteorol. Soc. Jpn., 80, 793–809, 2002. \\bibitem[]{} Plumb, R. A., Waugh, D. W., Atkinsons, R. J., Newman, P. A. Lait, L. R., Schoeberl, M. R., Browel, E. V., Simmons, A. J., and Lowenstein, M.: Intrusion into the lower stratospheric Arctic vortex during the winter of 1991/92, J. Geophys. Res., 99, 1089–1106, 1994. \\bibitem[]{} Polvani, L. M. and Plumb, R. A.: Rossby wave breaking, filamentation and secondary vortex formation: The dynamics of a perturbed vortex, J. Atmos. Sci., 49, 462–476, 1992. \\bibitem[]{} Randel, W. J.: The seasonal evolution of planetary waves in the Southern Hemisphere stratosphere and troposphere, Q. J. Roy. Meteorol. Soc., 114, 1385–1409, 1988. \\bibitem[]{} Randel, W. and Newman, P. A.: The stratosphere in the Southern Hemisphere, in: Meteorology of the Southern Hemisphere, edited by: Karoly, D. J. and Vincent, D. G., Meteorol. Monogr., 27, 243–282, 1998. \\bibitem[]{} Riviere, G. and Orlanski, I.: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation, J. Atmos. Sci., 64, 241–266, 2007. \\bibitem[]{} Shepherd, T. G.: Transport in the middle atmosphere, J. Meteorol. Soc. Jpn., 85B, 165–191, 2007. \\bibitem[]{} Swanson, K. L.: Stationary wave accumulation and the generation of low-frequency variability on zonally varying flows, J. Atmos. Sci., 57, 2262–2280, 2000. \\bibitem[]{} Swanson, K. L., Kushner, P. J., and Held, I. M.: Dynamics of barotropic storm tracks, J. Atmos. Sci., 54, 791–810, 1997. \\bibitem[]{} Teitelbaum, H. and Moustaoui, M.: Observation of a tongue pulled out from the Antarctic vortex due to barotropic instability, SPARC 4th General Assembly, available at: http://www.atmosp.physics.utoronto.ca/SPARC/SPARC2008GA/Posters/SessionB_P97_A68_Teitelbaum.pdf, 2008. \\bibitem[]{} Teitelbaum, H., Moustaoui, M., Van Velthoven, P. F. J., and Kelder, H.: Decrease of total ozone at low latitudes in the southern hemisphere by a combination of linear and non-linear processes, Q. J. Roy. Meteorol. Soc., 124, 2625–2644, 1998. \\bibitem[]{} Vincent, R. A., Hertzog, A., Boccara, G., and Vial, F.: Quasi-Lagrangian superpressure balloon measurements of gravity waves momentum fluxes in the polar stratosphere of both hemispheres, Geophys. Res. Lett., 34, L19804, https://doi.org/10.1029/2007GL031072, 2007. \\bibitem[]{} Waugh, D. W. and Plumb, R. A.: Contour advection with surgery: A technique for investigating fine scale structure in tracer transport, J. Atmos. Sci., 51, 330–540, 1994. \\bibitem[]{} Waugh, D. W. and Polvani, L. M.: Intrusions into the tropical upper troposphere, Geophys. Res. Lett., 27, 3857–3860, 2000. \\bibitem[]{} Waugh, D. W. and Polvani, L. M.: Stratospheric polar vortices, in: The Stratosphere: Dynamics, Chemistry, and Transport, Geophys. Monogr. Ser., 190, edited by: Polvani, L. M., Sobel, A. H., and Waugh, D. W., pp. 43–57, AGU, Washington, D.C., 2010. \\bibitem[]{} Waugh, D. W. and Randel, W. J.: Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics, J. Atmos. Sci., 56, 1594–1613, 1999. \\bibitem[]{} Waugh, D. W., Plumb, R. A., Atkinsons, R. J. , Schoeberl, M. R., Lait, L. R., Newman, P. A., Lowenstein, M., Toohey, D. W., Avallone, L. M., Webster, C. R., and May, R. D.: Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking, J. Geophys. Res., 99, 1071–1088, 1994.

3. Wirth, V.: What causes the seasonal cycle of stationary waves in the southern stratosphere?, J. Atmos. Sci., 48, 1194–1200, 1991.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3