Spatial spreading of magnetospherically reflected chorus elements in the inner magnetosphere

Author:

Breuillard H.,Zaliznyak Y.,Agapitov O.ORCID,Artemyev A.,Krasnoselskikh V.,Rolland G.

Abstract

Abstract. Chorus-type whistler waves are known to be generated in the vicinity of the magnetic equator, in the low-density plasma trough region. These wave packets propagate towards the magnetic poles, deviating from the magnetic field lines, before being eventually reflected at higher latitudes. Magnetospheric reflection of whistler waves results in bounce oscillations of these waves through the equator. Our study is devoted to the problem of geometrical spreading of these whistler-mode waves after their first magnetospheric reflection, which is crucial to determine where wave–particle interactions occur. Recently, experimental studies stated that the relative intensity of the reflected signal was generally between 0.005 and 0.05 of the source signal. We model such wave packets by means of ray tracing technique, using a warm plasma dispersion function along their trajectory and a realistic model of the inner magnetosphere. We reproduce the topology of the reflected energy distribution in the equatorial plane by modeling discrete chorus elements generated at the equator. Our calculations show that the spatial spreading is large and strongly dependent upon initial wave parameters, especially the chorus wave frequency. Thus, the divergence of each element ray trajectories can result in the filling of a large region (about 4 Earth radii around the source) of the magnetosphere and a reflected intensity of 0.005–0.06 of the source signal in the equatorial plane. These results are in good agreement with previous Cluster and THEMIS observations.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3